To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we investigate various combinatorial properties of Borel ideals on countable sets. We extend a theorem presented in [13] and identify an $F_\sigma $ tall ideal in which player II has a winning strategy in the Cut and Choose Game, thereby addressing a question posed by J. Zapletal. Additionally, we explore the Ramsey properties of ideals, demonstrating that the random graph ideal is critical for the Ramsey property when considering more than two colors. The previously known result for two colors is extended to any finite number of colors. Furthermore, we comment on the Solecki ideal and identify an $F_\sigma $ tall K-uniform ideal that is not equivalent to $\mathcal {ED}_{\text {fin}}$, thereby addressing a question from M. Hrušák’s work [10].
The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed ω-semigroups of width 2 and height ωω. This paper completes the description of this algebraic hierarchy. We first give a purely algebraic decidability procedure of this partial ordering by introducing a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees.The Wagner degree of any ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every degree of this hierarchy.
The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height ωω.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.