Groundwater is a critical support system for agriculture, domestic and industrial consumption in India, but escalating depletion and climatic stresses underscore the need for scientifically robust groundwater potential zone (GWPZ) mapping. In response to the aggravating water security issues in India, this study presents a critical and systematic-methodical review of research articles focused on GWPZ mapping. The primary goal of this research is to integrate input parameters, modeling techniques and validation methods to produce an evidence-based framework for selecting appropriate and effective GWPZ mapping strategies. Six prominent thematic categories – topography, geology, hydrology, climate, land cover and aquifer properties – seem to be inevitably predominant in different physiographic zones. Methodological tendencies suggest a shift from conventional Multi-Criteria Decision-Making models, that is, Analytical Hierarchy Process and Frequency Ratio, toward sophisticated machine learning techniques like Random Forests, Support Vector Machine and Extreme Gradient Boosting. Validation practices are dominated by a high incidence of receiver operating characteristic curve analysis and area under the curve metrics, with occasional addition of precision, recall, F1-score and root mean square error. Across the studies reviewed, field-derived data, well yield, groundwater depth, aquifer thickness and resistivity surveys remain critical for ground-truthing model results. Our view is that even though Indian GWPZ research has taken significant methodological strides, regional data heterogeneity, aquifer complexity and climatic variability issues continue to pose a key challenge in GWPZ mapping. We suggest future strategies involving high-resolution datasets, three-dimensional subsurface modeling, climate-resilient algorithms and more diversified validation frameworks. Through this critical synthesis, the article presents an integrated guide to support planners select cost-effective mapping techniques, inform policymakers on strategic investments and data collection priorities and direct researchers toward the most critical scientific gaps in India’s increasingly dynamic hydro-environmental context.