To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the mean-field dynamics of stochastic McKean differential equations with heterogeneous particle interactions described by large network structures. To express a wide range of graphs, from dense to sparse structures, we incorporate the recently developed graph limit theory of graphops into the limiting McKean–Vlasov equations. Global stability of the splay steady state is proven via a generalised entropy method, leading to explicit graph structure-dependent decay rates. We highlight the robustness of the entropy approach by extending the results to the closely related Sakaguchi–Kuramoto model with intrinsic frequency distributions. We also present central examples of random graphs, such as power law graphs and the spherical graphop, and analyse the limitations of the applied methodology.
We determine the order of the k-core in a large class of dense graph sequences. Let $G_n$ be a sequence of undirected, n-vertex graphs with edge weights $\{a^n_{i,j}\}_{i,j \in [n]}$ that converges to a graphon $W\colon[0,1]^2 \to [0,+\infty)$ in the cut metric. Keeping an edge (i,j) of $G_n$ with probability ${a^n_{i,j}}/{n}$ independently, we obtain a sequence of random graphs $G_n({1}/{n})$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of the k-core of random graphs $G_n({1}/{n})$. Our result can also be used to obtain the threshold of appearance of a k-core of order n.
Two ensembles are frequently used to model random graphs subject to constraints: the microcanonical ensemble (= hard constraint) and the canonical ensemble (= soft constraint). It is said that breaking of ensemble equivalence (BEE) occurs when the specific relative entropy of the two ensembles does not vanish as the size of the graph tends to infinity. Various examples have been analysed in the literature. It was found that BEE is the rule rather than the exception for two classes of constraints: sparse random graphs when the number of constraints is of the order of the number of vertices, and dense random graphs when there are two or more constraints that are frustrated. We establish BEE for a third class: dense random graphs with a single constraint on the density of a given simple graph. We show that BEE occurs in a certain range of choices for the density and the number of edges of the simple graph, which we refer to as the BEE-phase. We also show that, in part of the BEE-phase, there is a gap between the scaling limits of the averages of the maximal eigenvalue of the adjacency matrix of the random graph under the two ensembles, a property that is referred to as the spectral signature of BEE. We further show that in the replica symmetric region of the BEE-phase, BEE is due to the coexistence of two densities in the canonical ensemble.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.