Recent advancements in wearable robots have focused on developing soft, compliant, and lightweight structures to provide comfort for the users and to achieve the primary function of assisting body motions. The interaction forces induced by physical human-robot interaction (pHRI) not only cause skin discomfort or pain due to relatively high localized pressures but also degrade the wearability and the safety of the wearer’s joints by unnaturally altering the joint reaction forces (JRFs) and the joint reaction moments (JRMs). Although the correlation between excessive JRFs/JRMs and joint-related conditions has been reported by researchers, the biomechanical effects of forces and moments caused by the pHRI of a wearable robot on the wearer’s joints remain under-analyzed. In this study, we propose a method of measuring and analyzing these interactions and effects, using a custom-designed soft, three-degree-of-freedom (DOF) force sensor. The sensor is made of four Hall effect sensors and a neodymium magnet embedded in a silicone elastomer structure, enabling simultaneous measurement of normal and two-axis shear forces by detecting the distance changes between the magnet and each Hall effect sensor. These sensors are embedded in contact pads of a commercial wearable robot and measure the interaction forces, used for calculating JRF and JRM. We also propose a modified inverse dynamics approach that allows us to consider the physical interactions between the robot and the human body. The proposed method of sensing and analysis provides the potential to enhance the design of future wearable robots, ensuring long-term safety.