To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let C be a closed, bounded, convex subset of a uniformly convex Banach space, and let $\{T_s\}$ be an asymptotic nonexpansive semigroup of nonlinear mappings acting within C. Consider the implicit iteration process defined by the sequence of equations:
where each $c_k \in (0,1)$ and the initial point $x_0 \in C$ is arbitrarily chosen. In this context, we investigate the conditions under which the sequence $\{x_k\}$ converges, either weakly or strongly, to a common fixed point of the semigroup $\{T_s\}$. We also touch upon the question of the stability of such processes.
It has become increasingly clear that economies can fruitfully be viewed as networks, consisting of millions of nodes (households, firms, banks, etc.) connected by business, social, and legal relationships. These relationships shape many outcomes that economists often measure. Over the past few years, research on production networks has flourished, as economists try to understand supply-side dynamics, default cascades, aggregate fluctuations, and many other phenomena. Economic Networks provides a brisk introduction to network analysis that is self-contained, rigorous, and illustrated with many figures, diagrams and listings with computer code. Network methods are put to work analyzing production networks, financial networks, and other related topics (including optimal transport, another highly active research field). Visualizations using recent data bring key ideas to life.
We study the existence of fixed points for contraction multivalued mappings in modular metric spaces endowed with a graph. The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. This paper can be seen as a generalization of Nadler and Edelstein’s fixed point theorems to modular metric spaces endowed with a graph.
This paper studies the existence and the order structure of strong Berge equilibrium, a refinement of Nash equilibrium, for games with strategic complementarities à la strong Berge. It is shown that the equilibrium set is a nonempty complete lattice. Moreover, we provide a monotone comparative statics result such that the greatest and the lowest equilibria are increasing.
In this paper we present new fixed point theorems for inward and weakly inward type maps between Fréchet spaces. We also discuss Kakutani–Mönch and contractive type maps.
Kakutani's Theorem states that every point convex and use multifunction ϕ defined on a compact and convex set in a Euclidean space has at least one fixed point. Some necessary conditions are given here which ϕ must satisfy if c is the unique fixed point of ϕ. It is e.g. shown that if the width of ϕ(c) is greater than zero, then ϕ cannot be lsc at c, and if in addition c lies on the boundary of ϕ(c), then there exists a sequence {xk} which converges to c and for which the width of the sets ϕ(xk) converges to zero. If the width of ϕ(c) is zero, then the width of ϕ(xk) converges to zero whenever the sequence {xk} converges to c, but in this case ϕ can be lsc at c.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.