Let
$f(x)\in \mathbb {Z}[x]$ be a nonconstant polynomial. Let
$n\ge 1, k\ge 2$ and c be integers. An integer a is called an f-exunit in the ring
$\mathbb {Z}_n$ of residue classes modulo n if
$\gcd (f(a),n)=1$. We use the principle of cross-classification to derive an explicit formula for the number
${\mathcal N}_{k,f,c}(n)$ of solutions
$(x_1,\ldots ,x_k)$ of the congruence
$x_1+\cdots +x_k\equiv c\pmod n$ with all
$x_i$ being f-exunits in the ring
$\mathbb {Z}_n$. This extends a recent result of Anand et al. [‘On a question of f-exunits in
$\mathbb {Z}/{n\mathbb {Z}}$’, Arch. Math. (Basel) 116 (2021), 403–409]. We derive a more explicit formula for
${\mathcal N}_{k,f,c}(n)$ when
$f(x)$ is linear or quadratic.