To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish some properties of $\tau$-exceptional sequences for finite-dimensional algebras. In an earlier paper, we established a bijection between the set of ordered support $\tau$-tilting modules and the set of complete signed $\tau$-exceptional sequences. We describe the action of the symmetric group on the latter induced by its natural action on the former. Similarly, we describe the effect on a $\tau$-exceptional sequence obtained by mutating the corresponding ordered support $\tau$-tilting module via a construction of Adachi-Iyama-Reiten.
In this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.
King's conjecture states that on every smooth complete toric variety $X$ there exists a strongly exceptional collection which generates the bounded derived category of $X$ and which consists of line bundles. We give a counterexample to this conjecture. This example is just the Hirzebruch surface $\mathbb{F}_2$ iteratively blown up three times, and we show by explicit computation of cohomology vanishing that there exist no strongly exceptional sequences of length 7 which consist of line bundles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.