We prove a Poisson process approximation result for stabilising functionals of a determinantal point process. Our results use concrete couplings of determinantal processes with different Palm measures and exploit their association properties. Second, we focus on the Ginibre process and show in the asymptotic scenario of an increasing observation window that the process of points with a large nearest neighbour distance converges after a suitable scaling to a Poisson point process. As a corollary, we obtain the scaling of the maximum nearest neighbour distance in the Ginibre process, which turns out to be different from its analogue for independent points.