To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It was proved in [11, J. Funct. Anal., 2020] that the Cauchy problem for some Oldroyd-B model is well-posed in $\dot{B}^{d/p-1}_{p,1}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,1}(\mathbb{R}^d)$ with $1\leq p \lt 2d$. In this paper, we prove that the Cauchy problem for the same Oldroyd-B model is ill-posed in $\dot{B}^{d/p-1}_{p,r}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,r}(\mathbb{R}^d)$ with $1\leq p\leq \infty$ and $1 \lt r\leq\infty$ due to the lack of continuous dependence of the solution.
A new class of history-dependent variational–hemivariational inequalities was recently studied in Migórski et al. (2015Nonlinear Anal. Ser. B: Real World Appl.22, 604–618). There, an existence and uniqueness result was proved and used in the study of a mathematical model which describes the contact between a viscoelastic body and an obstacle. The aim of this paper is to continue the analysis of the inequalities introduced in Migórski et al. (2015Nonlinear Anal. Ser. B: Real World Appl.22, 604–618) and to provide their numerical analysis. We start with a continuous dependence result. Then we introduce numerical schemes to solve the inequalities and derive error estimates. We apply the results to a quasistatic frictional contact problem in which the material is modelled with a viscoelastic constitutive law, the contact is given in the form of normal compliance, and friction is described with a total slip-dependent version of Coulomb's law.
Continuous dependence upon the elastic moduli of the total energy, and consequently in appropriate measure of the stress, strain and displacement, is established in the initial boundary value problem defined on a semi-infinite cylinder occupied by a linear anisotropic compressible elastic material. Free, constrained and mixed boundary conditions on the lateral surface of the cylinder are discussed. The conclusions are obtained using differential inequalities and partly depend upon previously published results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.