To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies the conjecture of Hirschfeldt, Miller, and Podzorov in [13] on the complexity of order-computable sets, where a set A is order-computable if there is a computable copy of the structure $(\mathbb {N}, <,A)$ in the language of linear orders together with a unary predicate. The class of order-computable sets forms a subclass of $\Delta ^{0}_{2}$ sets. Firstly, we study the complexity of computably enumerable (c.e.) order-computable sets and prove that the index set of c.e. order-computable sets is $\Sigma ^{0}_{4}$-complete. Secondly, as a corollary of the main result on c.e. order-computable sets, we obtain that the index set of general order computable sets is $\Sigma ^{0}_{4}$-complete within the index set of $\Delta ^{0}_{2}$ sets. Finally, we continue to study the complexity of more general $\Delta ^{0}_{2}$ sets and prove that the index set of $\Delta ^{0}_{2}$ sets is $\Pi ^{0}_{3}$-complete.
In the study of the arithmetic degrees the $\omega \text {-REA}$ sets play a role analogous to the role the r.e. degrees play in the study of the Turing degrees. However, much less is known about the arithmetic degrees and the role of the $\omega \text {-REA}$ sets in that structure than about the Turing degrees. Indeed, even basic questions such as the existence of an $\omega \text {-REA}$ set of minimal arithmetic degree are open. This paper makes progress on this question by demonstrating that some promising approaches inspired by the analogy with the r.e. sets fail to show that no $\omega \text {-REA}$ set is arithmetically minimal. Finally, it constructs a $\prod ^0_{2}$ singleton of minimal arithmetic degree. Not only is this a result of considerable interest in its own right, constructions of $\prod ^0_{2}$ singletons often pave the way for constructions of $\omega \text {-REA}$ sets with similar properties. Along the way, a number of interesting results relating arithmetic reducibility and rates of growth are established.
We define $\Psi $-autoreducible sets given an autoreduction procedure $\Psi $. Then, we show that for any $\Psi $, a measurable class of $\Psi $-autoreducible sets has measure zero. Using this, we show that classes of cototal, uniformly introenumerable, introenumerable, and hyper-cototal enumeration degrees all have measure zero.
By analyzing the arithmetical complexity of the classes of cototal sets and cototal enumeration degrees, we show that weakly 2-random sets cannot be cototal and weakly 3-random sets cannot be of cototal enumeration degree. Then, we see that this result is optimal by showing that there exists a 1-random cototal set and a 2-random set of cototal enumeration degree. For uniformly introenumerable degrees and introenumerable degrees, we utilize $\Psi $-autoreducibility again to show the optimal result that no weakly 3-random sets can have introenumerable enumeration degree. We also show that no 1-random set can be introenumerable.
Computability theoretic aspects of Polish metric spaces are studied by adapting notions and methods of computable structure theory. In this dissertation, we mainly investigate index sets and classification problems for computably presentable Polish metric spaces. We find the complexity of a number of index sets, isomorphism problems, and embedding problems for computably presentable metric spaces. We also provide several computable structure theory results related to some classical Polish metric spaces such as the Urysohn space $\mathbb {U}$, the Cantor space $2^{\mathbb {N}}$, the Baire space $\mathbb {N}^{\mathbb {N}}$, and spaces of continuous functions.
We study ordered groups in the context of both algebra and computability. Ordered groups are groups that admit a linear order that is compatible with the group operation. We explore some properties of ordered groups and discuss some related topics. We prove results about the semidirect product in relation to orderability and computability. In particular, we give a criteria for when a semidirect product of orderable groups is orderable and for when a semidirect product is computably categorical. We also give an example of a semidirect product that has the halting set coded into its multiplication structure but it is possible to construct a computable presentation of this semidirect product.
We examine a family of orderable groups that admit exactly countably many orders and show that their space of orders has arbitrary finite Cantor–Bendixson rank. Furthermore, this family of groups is also shown to be computably categorical, which in particular will allow us to conclude that any computable presentation of the groups does not admit any noncomputable orders. Lastly, we construct an example of an orderable computable group with no computable Archimedean orders but at least one computable non-Archimedean order.
We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$. For each fixed $k \geq 3$, the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$. The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$. Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$, by $\mathsf {ADS}$, and by $\mathsf {SADS}$. Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$.
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.
Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work in Zermelo–Fraenkel set theory with dependent choice and the axiom of determinacy $\mathsf {AD}$. On the other hand, using the full axiom of choice, one can construct problems which are discontinuous, but not effectively so. Hence, the exact situation at the bottom of the Weihrauch lattice sensitively depends on the axiomatic setting that we choose. We prove our result using a variant of Wadge games for mathematical problems. While the existence of a winning strategy for Player II characterizes continuity of the problem (as already shown by Nobrega and Pauly), the existence of a winning strategy for Player I characterizes effective discontinuity of the problem. By Weihrauch determinacy we understand the condition that every problem is either continuous or effectively discontinuous. This notion of determinacy is a fairly strong notion, as it is not only implied by the axiom of determinacy $\mathsf {AD}$, but it also implies Wadge determinacy. We close with a brief discussion of generalized notions of productivity.
The thin set theorem for n-tuples and k colors ($\operatorname {\mathrm {\sf {TS}}}^n_k$) states that every k-coloring of $[\mathbb {N}]^n$ admits an infinite set of integers H such that $[H]^n$ avoids at least one color. In this paper, we study the combinatorial weakness of the thin set theorem in reverse mathematics by proving neither $\operatorname {\mathrm {\sf {TS}}}^n_k$, nor the free set theorem ($\operatorname {\mathrm {\sf {FS}}}^n$) imply the Erdős–Moser theorem ($\operatorname {\mathrm {\sf {EM}}}$) whenever k is sufficiently large (answering a question of Patey and giving a partial result towards a question of Cholak Giusto, Hirst and Jockusch). Given a problem $\mathsf {P}$, a computable instance of $\mathsf {P}$ is universal iff its solution computes a solution of any other computable $\mathsf {P}$-instance. It has been established that most of Ramsey-type problems do not have a universal instance, but the case of Erdős–Moser theorem remained open so far. We prove that Erdős–Moser theorem does not admit a universal instance (answering a question of Patey).
For a ring R, Hilbert’s Tenth Problem $HTP(R)$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP(\mathbb {Z}[W^{-1}])$, which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$. It is known that for almost all W, the jump $W'$ does not $1$-reduce to $HTP(R_W)$. In contrast, we show that every Turing degree contains a set W for which such a $1$-reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP(\mathbb {Z}[W^{-1}])$ can succeed uniformly on a set of measure $1$, and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$.
Ramsey’s theorem asserts that every k-coloring of $[\omega ]^n$ admits an infinite monochromatic set. Whenever $n \geq 3$, there exists a computable k-coloring of $[\omega ]^n$ whose solutions compute the halting set. On the other hand, for every computable k-coloring of $[\omega ]^2$ and every noncomputable set C, there is an infinite monochromatic set H such that $C \not \leq _T H$. The latter property is known as cone avoidance.
In this article, we design a natural class of Ramsey-like theorems encompassing many statements studied in reverse mathematics. We prove that this class admits a maximal statement satisfying cone avoidance and use it as a criterion to re-obtain many existing proofs of cone avoidance. This maximal statement asserts the existence, for every k-coloring of $[\omega ]^n$, of an infinite subdomain $H \subseteq \omega $ over which the coloring depends only on the sparsity of its elements. This confirms the intuition that Ramsey-like theorems compute Turing degrees only through the sparsity of its solutions.
A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem ${\mathsf {P}}$, to find a solution relative to which A is still noncomputable.
In this article, we compare relativized versions of computability-theoretic notions of preservation which have been studied in reverse mathematics, and prove that the ones which were not already separated by natural statements in the literature actually coincide. In particular, we prove that it is equivalent to admit avoidance of one cone, of $\omega $ cones, of one hyperimmunity or of one non-$\Sigma ^{0}_1$ definition. We also prove that the hierarchies of preservation of hyperimmunity and non-$\Sigma ^{0}_1$ definitions coincide. On the other hand, none of these notions coincide in a nonrelativized setting.
In this introductory survey, we provide an overview of the major developments of algorithmic randomness with an eye towards the historical development of the discipline. First we give a brief introduction to computability theory and the underlying mathematical concepts that later appear in the survey. Next we selectively cover four broad periods in which the primary developments in algorithmic randomness occurred: (1) the mid-1960s to mid-1970s, in which the main definitions of algorithmic randomness were laid out and the basic properties of random sequences were established; (2) the 1980s through the 1990s, which featured intermittent and important work from a handful of researchers; (3) the 2000s, during which there was an explosion of results as the discipline matured into a fully-fledged subbranch of computability theory; and (4) the early 2010s, in which ties between algorithmic randomness and other subfields of mathematics were discovered. The aim of this survey is to provide a point of entry for newcomers to the field and a useful reference for practitioners.
The halting probability of a Turing machine was introduced by Chaitin, who also proved that it is an algorithmically random real number and named it Omega. Since his seminal work, many popular expositions have appeared, mainly focusing on the metamathematical or philosophical significance of this number (or debating against it). At the same time, a rich mathematical theory exploring the properties of Chaitin's Omega has been brewing in various technical papers, which quietly reveals the significance of this number to many aspects of contemporary algorithmic information theory. The purpose of this survey is to expose these developments and tell a story about Omega which outlines its multi-faceted mathematical properties and roles in algorithmic randomness.
This is a survey of constructive and computable measure theory with an emphasis on the close connections with algorithmic randomness. We give a brief history of constructive measure theory from Brouwer to the present, emphasizing how Schnorr randomness is the randomness notion implicit in the work of Brouwer, Bishop, Demuth, and others. We survey a number of recent results showing that classical almost everywhere convergence theorems can be used to characterize many of the common randomness notions including Schnorr randomness, computable randomness, and Martin-Löf randomness. Last, we go into more detail about computable measure theory, showing how all the major approaches are basically equivalent (even though the definitions can vary greatly).
The field of algorithmic randomness studies the various ways to define the inherent randomness of individual points in a space (for example, the Cantor space or Euclidean space). Classically, this quest seems quixotic. However, the theory of computing allows us to give mathematically meaningful notions of random points. In the past few decades, algorithmic randomness has been extended to make use of resource-bounded (e.g., time or space) computation. In this survey we survey these developments as well as their applications to other parts of mathematics.
We investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent to the existence of Schnorr randoms. We show that the existence of balanced randoms is equivalent to the existence of Martin-Löf randoms, and we describe a sense in which this result is nearly optimal.
We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is ${\rm{\Delta }}_\alpha ^0 $-complete for some α. To prove this, we extend Montalbán’s η-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinal α and a cone in the Turing degrees such that the exact complexity of computing an isomorphism between the given structure and another copy ${\cal B}$ in the cone is a c.e. degree in ${\rm{\Delta }}_\alpha ^0\left( {\cal B} \right)$. In each of our theorems the cone in question is clearly described in the beginning of the proof, so it is easy to see how the theorems can be viewed as general theorems with certain effectiveness conditions.
This paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.