To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Identifying key areas of brain dysfunction in mental illness is critical for developing precision diagnosis and treatment. This study aimed to develop region-specific brain aging trajectory prediction models using multimodal magnetic resonance imaging (MRI) to identify similarities and differences in abnormal aging between bipolar disorder (BD) and major depressive disorder (MDD) and pinpoint key brain regions of structural and functional change specific to each disorder.
Methods
Neuroimaging data from 340 healthy controls, 110 BD participants, and 68 MDD participants were included from the Taiwan Aging and Mental Illness cohort. We constructed 228 models using T1-weighted MRI, resting-state functional MRI, and diffusion tensor imaging data. Gaussian process regression was used to train models for estimating brain aging trajectories using structural and functional maps across various brain regions.
Results
Our models demonstrated robust performance, revealing accelerated aging in 66 gray matter regions in BD and 67 in MDD, with 13 regions common to both disorders. The BD group showed accelerated aging in 17 regions on functional maps, whereas no such regions were found in MDD. Fractional anisotropy analysis identified 43 aging white matter tracts in BD and 39 in MDD, with 16 tracts common to both disorders. Importantly, there were also unique brain regions with accelerated aging specific to each disorder.
Conclusions
These findings highlight the potential of brain aging trajectories as biomarkers for BD and MDD, offering insights into distinct and overlapping neuroanatomical changes. Incorporating region-specific changes in brain structure and function over time could enhance the understanding and treatment of mental illness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.