For   $p\,>\,0$  and for a given set
 $p\,>\,0$  and for a given set   $E$  of type
 $E$  of type   ${{G}_{\delta }}$  in the boundary of the unit disc
 ${{G}_{\delta }}$  in the boundary of the unit disc   $\partial \mathbb{D}$  we construct a holomorphic function
 $\partial \mathbb{D}$  we construct a holomorphic function   $f\,\in \,\mathbb{O}\left( \mathbb{D} \right)$  such that
 $f\,\in \,\mathbb{O}\left( \mathbb{D} \right)$  such that
   $${{\int_{\mathbb{D}\backslash \left[ 0,\,1 \right]E}{\left| f \right|}}^{p}}\,d{{\mathfrak{L}}^{2}}\,<\,\infty \,\text{and}\,E\,=\,{{E}^{p}}\left( f \right)\,=\,\{\,z\,\in \,\partial \mathbb{D}\,:\,\int _{0}^{1}\,{{\left| f\left( tz \right) \right|}^{p}}\,dt\,=\,\infty \}.$$
 $${{\int_{\mathbb{D}\backslash \left[ 0,\,1 \right]E}{\left| f \right|}}^{p}}\,d{{\mathfrak{L}}^{2}}\,<\,\infty \,\text{and}\,E\,=\,{{E}^{p}}\left( f \right)\,=\,\{\,z\,\in \,\partial \mathbb{D}\,:\,\int _{0}^{1}\,{{\left| f\left( tz \right) \right|}^{p}}\,dt\,=\,\infty \}.$$  
In particular if a set   $E$  has a measure equal to zero, then a function
 $E$  has a measure equal to zero, then a function   $f$  is constructed as integrable with power
 $f$  is constructed as integrable with power   $p$  on the unit disc
 $p$  on the unit disc   $\mathbb{D}$ .
 $\mathbb{D}$ .