To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define and study a generalization of the Beilinson–Drinfeld Grassmannian to the case where the curve is replaced by a smooth projective surface $X$, and the trivialization data are given on loci associated with a nonlinear flag of closed subschemes. We first establish some general formal gluing results for moduli of (almost) perfect complexes and torsors. We construct a simplicial object $\operatorname {\underline {\mathsf{Fl}}}_X$ of flags of closed subschemes of a smooth projective surface $X$, associated with the operation of taking union of flags. We prove that this simplicial object has the $2$-Segal property. For an affine complex algebraic group $G$, we define a derived, flag analogue $\mathcal{G}r_X$ of the Beilinson–Drinfeld Grassmannian of $G$-bundles on the surface $X$, and show that most of the properties of the Beilinson–Drinfeld Grassmannian for curves can be extended to our flag generalization: we prove a factorization formula, the existence of a canonical flat connection and define a chiral product on suitable sheaves on $\operatorname {\underline {\mathsf{Fl}}}_X$ and on $\mathcal{G}r_X$. We sketch the construction of actions of flags analogues of the loop group and of the positive loop group on $\mathcal{G}r_X$. To fixed ‘large’ flags on $X$, we associate ‘exotic’ derived structures on the stack of $G$-bundles on $X$.
In the present notes, we study a generalization of the Peterson subalgebra to an oriented (generalized) cohomology theory which we call the formal Peterson subalgebra. Observe that by recent results of Zhong the dual of the formal Peterson algebra provides an algebraic model for the oriented cohomology of the affine Grassmannian.
Our first result shows that the centre of the formal affine Demazure algebra (FADA) generates the formal Peterson subalgebra. Our second observation is motivated by the Peterson conjecture. We show that a certain localization of the formal Peterson subalgebra for the extended Dynkin diagram of type $\hat A_1$ provides an algebraic model for “quantum” oriented cohomology of the projective line. Our last result can be viewed as an extension of the previous results on Hopf algebroids of structure algebras of moment graphs to the case of affine root systems. We prove that the dual of the formal Peterson subalgebra (an oriented cohomology of the affine Grassmannian) is the zeroth Hochschild homology of the FADA.
We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on .
The aim of this chapter is first to set some basic notation and preliminaries (to be used through the book) and then recall the definition of affine Kac--Moody Lie algebras and their basic representation theory and to study the associated groups and their flag varieties. We define the loop group G((t)) (without the central extension) and its various subgroups. Then, we study the associated infinite Grassmannian and prove that it is a reduced ind-variety when G is a semisimple group. We show that G((t)) is a reduced affine ind-scheme. We further study the central extensions of G((t)).
We study basic geometric properties of Kottwitz–Viehmann varieties, which are certain generalizations of affine Springer fibers that encode orbital integrals of spherical Hecke functions. Based on the previous work of A. Bouthier and the author, we show that these varieties are equidimensional and give a precise formula for their dimension. Also we give a conjectural description of their number of irreducible components in terms of certain weight multiplicities of the Langlands dual group and we prove the conjecture in the case of unramified conjugacy class.
An important result of Arkhipov–Bezrukavnikov–Ginzburg relates constructible sheaves on the affine Grassmannian to coherent sheaves on the dual Springer resolution. In this paper, we prove a positive-characteristic analogue of this statement, using the framework of ‘mixed modular sheaves’ recently developed by the first author and Riche. As an application, we deduce a relationship between parity sheaves on the affine Grassmannian and Bezrukavnikov’s ‘exotic t-structure’ on the Springer resolution.
For $T$ a compact torus and $E_{T}^{*}$ a generalized $T$-equivariant cohomology theory, we provide a systematic framework for computing $E_{T}^{*}$ in the context of equivariantly stratified smooth complex projective varieties. This allows us to explicitly compute $H_{T}^{*}\left( X \right)$ as an $H_{T}^{*}\left( pt \right)$-module when $X$ is a direct limit of smooth complex projective ${{T}_{\mathbb{C}}}$-varieties. We perform this computation on the affine Grassmannian of a complex semisimple group.
We determine the set of connected components of minuscule affine Deligne–Lusztig varieties for hyperspecial maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne–Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected components of unramified Rapoport–Zink spaces.
We construct the Schubert basis of the torus-equivariant K-homology of the affine Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson in equivariant homology. For the case where G=SLn, the K-homology of the affine Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions. The Schubert basis is represented by inhomogeneous symmetric functions, calledK-k-Schur functions, whose highest-degree term is a k-Schur function. The dual basis in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our constructions have geometric interpretations by means of Kashiwara’s thick affine flag manifold.
For an almost simple complex algebraic group G with affine Grassmannian $\text{Gr}_G=G(\mathbb{C}(({\rm t})))/G(\mathbb{C}[[{\rm t}]])$, we consider the equivariant homology $H^{G(\mathbb{C}[[{\rm t}]])}(\text{Gr}_G)$ and K-theory $K^{G(\mathbb{C}[[{\rm t}]])}(\text{Gr}_G)$. They both have a commutative ring structure with respect to convolution. We identify the spectrum of homology ring with the universal group-algebra centralizer of the Langlands dual group $\check G$, and we relate the spectrum of K-homology ring to the universal group-group centralizer of G and of $\check G$. If we add the loop-rotation equivariance, we obtain a noncommutative deformation of the (K-)homology ring, and thus a Poisson structure on its spectrum. We relate this structure to the standard one on the universal centralizer. The commutative subring of $G(\mathbb{C}[[{\rm t}]])$-equivariant homology of the point gives rise to a polarization which is related to Kostant's Toda lattice integrable system. We also compute the equivariant K-ring of the affine Grassmannian Steinberg variety. The equivariant K-homology of GrG is equipped with a canonical basis formed by the classes of simple equivariant perverse coherent sheaves. Their convolution is again perverse and is related to the Feigin–Loktev fusion product of $G(\mathbb{C}[[{\rm t}]])$-modules.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.