In this paper, we derive simple analytical bounds for solutions of  $x - \ln x = y -\ln y$, and use them for estimating trajectories following Lotka–Volterra-type integrals. We show how our results give estimates for the Lambert W function as well as for trajectories of general predator–prey systems, including, for example, Rosenzweig–MacArthur equations.
$x - \ln x = y -\ln y$, and use them for estimating trajectories following Lotka–Volterra-type integrals. We show how our results give estimates for the Lambert W function as well as for trajectories of general predator–prey systems, including, for example, Rosenzweig–MacArthur equations.