To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over the last century, a large variety of infinite congruence families have been discovered and studied, exhibiting a great variety with respect to their difficulty. Major complicating factors arise from the topology of the associated modular curve: classical techniques are sufficient when the associated curve has cusp count 2 and genus 0. Recent work has led to new techniques that have proven useful when the associated curve has cusp count greater than 2 and genus 0. We show here that these techniques may be adapted in the case of positive genus. In particular, we examine a congruence family over the 2-elongated plane partition diamond counting function $d_2(n)$ by powers of 7, for which the associated modular curve has cusp count 4 and genus 1. We compare our method with other techniques for proving genus 1 congruence families, and conjecture a second congruence family by powers of 7, which may be amenable to similar techniques.
Kanai proved powerful results on the stability under quasi-isometries of numerous global properties (including Liouville property) between Riemannian manifolds of bounded geometry. Since his work focuses more on the generality of the spaces considered than on the two-dimensional geometry, Kanai's hypotheses in many cases are not satisfied in the context of Riemann surfaces endowed with the Poincaré metric. In this work we fill that gap for the Liouville property, by proving its stability by quasi-isometries for every Riemann surface (and even Riemannian surfaces with pinched negative curvature). Also, a key result characterizes Riemannian surfaces which are quasi-isometric to $\mathbb {R}$.
We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extensions of) the Laplacians on a compact Riemann surface of genus one with conformal metric of curvature $1$ having a single conical singularity of angle $4\unicode[STIX]{x1D70B}$.
In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and embedded minimal surfaces in $\mathbb{R}^{n}$ and in minimally convex domains of $\mathbb{R}^{n}$, results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.
In this paper we study holomorphic Legendrian curves in the standard holomorphic contact structure on $\mathbb{C}^{2n+1}$ for any $n\in \mathbb{N}$. We provide several approximation and desingularization results which enable us to prove general existence theorems, settling some of the open problems in the subject. In particular, we show that every open Riemann surface $M$ admits a proper holomorphic Legendrian embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$, and we prove that for every compact bordered Riemann surface $M={M\unicode[STIX]{x0030A}}\,\cup \,bM$ there exists a topological embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$ whose restriction to the interior is a complete holomorphic Legendrian embedding ${M\unicode[STIX]{x0030A}}{\hookrightarrow}\mathbb{C}^{2n+1}$. As a consequence, we infer that every complex contact manifold $W$ carries relatively compact holomorphic Legendrian curves, normalized by any given bordered Riemann surface, which are complete with respect to any Riemannian metric on $W$.
In this paper we prove that there is only one conjugacy class of dihedral group of order $2p$ in the $2\left( p\,-\,1 \right)\,\times \,2\left( p\,-\,1 \right)$ integral symplectic group that can be realized by an analytic automorphism group of compact connected Riemann surfaces of genus $p\,-\,1$. A pair of representative generators of the realizable class is also given.
Let ℳ be a regular map of genus g>1 and X be the underlying Riemann surface. A reflection of ℳ fixes some simple closed curves on X, which we call mirrors. Each mirror passes through at least two of the geometric points (vertices, face-centers and edge-centers) of ℳ. In this paper we study the surfaces which contain mirrors passing through just two geometric points, and show that only Wiman surfaces have this property.
We prove results on geodesic metric spaces which guarantee that some spaces are not hyperbolic in the Gromov sense. We use these theorems in order to study the hyperbolicity of Riemann surfaces. We obtain a criterion on the genus of a surface which implies non-hyperbolicity. We also include a characterization of the hyperbolicity of a Riemann surface $S^*$ obtained by deleting a closed set from one original surface $S$. In the particular case when the closed set is a union of continua and isolated points, the results clarify the role of punctures and funnels (and other more general ends) in the hyperbolicity of Riemann surfaces.
The explicit defining equations of a new family of curves whose members have a trivial automorphism group are given. Each member is defined for characteristic zero and all but a finite number of characteristics greater than zero. This family, in conjunction with a previously appearing family of the author’s, provides explicit examples of algebraic curves which possess only the trivial automorphism for each genus greater than three. The family is then used to construct Riemann surfaces without anticonformal automorphisms and Klein surfaces with no non-trivial automorphisms.
Moduli spaces of pointed curves with some level structure are studied. We prove that for so-called geometric level structures, the levels encountered in the boundary are smooth if the ambient variety is smooth, and in some cases we can describe them explicitly. The smoothness implies that the moduli space of pointed curves (over any field) admits a smooth finite Galois cover. Finally, we prove that some of these moduli spaces are simply connected.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.