To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Metacercariae of Diplostomum spp. are widespread fish parasites. In this study we obtained the first data on infection of Bullhead Cottus koshewnikowi with these larvae in five rivers of northern Europe (Finland and Russia) using molecular and morphological description. Three Diplostomum spp. were revealed in the eyes of bullheads. Diplostomum spathaceum and D. mergi Lineage 3 sensu Georgieva et al. (2013) were found in the lens, while Diplostomum sp. Lineage 6 sensu Blasco-Costa et al. (2014) was found in the retina. We obtained molecular data on these three species and provided morphological characteristics of the latter two species. Partial sequences of the cytochrome c oxidase subunit 1 (cox1) and ITS1-5.8S-ITS2 were amplified for 20 isolates. Using molecular data, we ascertained the species identification and obtained new information on the life cycles of D. mergi Lineage 3 and Diplostomum sp. Lineage 6. Partial cox1 sequences were used to assess the haplotype diversity of D. mergi Lineage 3 and Diplostomum sp. Lineage 6 in the study area. Discriminant analysis showed that D. mergi Lineage 3 was morphometrically close both to the species of the lens complex (D. mergi Lineage 2, D. mergi, D. nordmanni, and D. parviventosum) and to the species from the retina (D. pungiti, D. volvens). Dimensions of Diplostomum gobiorum lay far outside the confidence interval of D. mergi Lineage 3. Our molecular and morphological data and the new information about the hosts and the distribution of these parasites are a crucial step towards elucidating the diversity and life cycles of these important parasites. The data on the infection of bullheads in the River Utsjoki (a tributary of the River Teno, Finland) with metacercariae of Diplostomum spp. offer some insights into the relationships between the introduced host and the native parasites. Infection of bullheads, which are considered invasive in the Teno River system, with metacercariae of Diplostomum spp. may lead to increased infection levels in resident fish.
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
To compare the baseline signal between two conditions used to generate the photopic negative response (PhNR) of the full-field electroretinogram (ERG): red flash on a blue background (RoB) and white flash on a white background (LA3). The secondary purpose is to identify how the level of pre-stimulus signal affects obtaining an unambiguous PhNR component. A retrospective chart review was conducted on four cohorts of patients undergoing routine ERG testing. In each group, LA3 was recorded the same way while RoB was generated differently using various luminances of red and blue light. The background bioelectrical activity 30 ms before the flash was extracted, and the root mean square (RMS) of the signal was calculated and compared between RoB and LA3 using Wilcoxon test. Pre-stimulus noise was significantly higher under RoB stimulation versus LA3 in all four conditions for both right and left eyes (ratio RoB/LA3 RMS 1.70 and 1.57 respectively, p < 0.033). There was also no significant difference between the RMS of either LA3 or RoB across protocols, indicating that the baseline noise across cohorts were comparable. Additionally, pre-stimulus noise was higher in signals where PhNR was not clearly identifiable as an ERG component versus signals with the presence of unambiguous PhNR component under RoB in all four groups for both eyes (p < 0.05), whereas the difference under LA3 was less pronounced. Our study suggests that LA3 produces less background bioelectrical activity, likely due to decreased facial muscle activity. As it seems that the pre-stimulus signal level affects PhNR recordability, LA3 may also produce a better-quality signal compared to RoB. Therefore, until conditions for a comparable bioelectrical activity under RoB are established, we believe that LA3 should be considered at least as a supplementary method to evaluate retinal ganglion cell function by ERG.
This study aimed to evaluate the retinal nerve fibre layer changes among different group of patients with schizophrenia and compare it with healthy controls by using swept-source optical coherence tomography.
Methodology:
Patients with first-episode schizophrenia (n = 21) in remission (n = 35) or with treatment-resistant schizophrenia (TRS) (n = 35) and 36 healthy controls were evaluated for retinal thickness.
Results:
Patients with psychotic illnesses had significantly lower sub-foveal choroidal thickness (effect size 0.84–0.86), when compared to the healthy controls. When patients with first-episode schizophrenia were compared with patients with TRS, TRS patients had significant lower sub-foveal choroidal thickness (left eye) when the various confounders (such as age, gender, duration of treatment, smoking, current medications, body mass index, waist circumference, blood pressure, fasting glucose, HbA1c, presence or absence of metabolic syndrome) were taken into account. When the patients with TRS were compared with healthy controls, initially significant differences were observed for the macular volume (left and right) and the ganglion cell thickness (right eye) but these differences disappeared after controlling for the various covariates.
Conclusions:
Compared to healthy controls, patients with schizophrenia, psychotic illnesses have thinning of the retina, especially in the sub-foveal choroidal thickness.
Volume reductions in brain structures of patients with schizophrenia spectrum disorder (SSD) have repeatedly been found in voxel-based morphometry MRI studies. Hence, an underlying neurodegenerative etiological component of SSD is currently being discussed. In recent years, the imaging method of optical coherence tomography (OCT) has shown its potential in evaluating structural changes in the retina in patients with confirmed neurodegenerative disorders, providing a window into the brain.
Objectives
To evaluate potential differences in measurements of retinal layers between patients with schizophrenia spectrum disorder and healthy controls with OCT.
Methods
Twenty-six patients with schizophrenia or schizoaffective disorder and 23 age- and sex-matched healthy controls were examined with the Heidelberg Spectralis OCT system to derive a single-layer analysis of both retinas. The segmentation of retinal layers was manually corrected to minimize artifacts and software imprecisions.
Results
Compared to the control group, SSD patients showed reduced thickness and volume measurements for nearly all retinal layers, and these differences reached significance for macular volume, macular thickness, retinal nerve fiber layer (RNFL) and inner nucleiform layer (INL). Furthermore, a significant correlation between the duration of illness and the total volume of the RNFL was found.
Conclusions
Our OCT measurements demonstrate reduced single retinal layer thickness in patients with SSD. In the context of the MRI volume changes, our results provide further evidence that structural changes seen in the brain of patients are also observable in the retina, potentially allowing further insights into the different components of the nervous system that are altered in this highly etiologically complex disorder.
The distinctiveness of their eyes has played a major role in debates about snake origins and early evolution, having been interpreted as providing evidence for nocturnal and/or fossorial (and to a lesser degree, aquatic) origins. Much of this evidence came from anatomical studies of snake retinas in the 1900s. More recent morphological and molecular studies have provided further evidence for the distinctness of the snake eye that lacks many of the traits present in lizards. Data remain patchy and are particularly sparse for extant lineages (scolecophidians and non-caenophidian alethinophidians) that bear special importance for inferring traits of the ancestral snake. However, evidence is strong for: (1) the ancestral snake having lost multiple anatomical and molecular genetic components present in the eyes of the ancestral squamate and retained by most lizards; (2) the eye of the ancestral snake being adapted for low-light environments and/or activity cycles but being notably less regressed than that of extant scolecophidians; (3) an elaboration and diversification of the eye within endoglyptodont caenophidian snakes.
The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.
Precision medicine in psychiatry is based on the identification of homogeneous subgroups of patients with the help of biosignatures—sets of biomarkers—in order to enhance diagnosis, stratification of patients, prognosis, evaluation, and prediction of treatment response. Within the broad domain of biomarker discovery, we propose retinal electrophysiology as a tool for identification of biosignatures. The retina is a window to the brain and provides an indirect access to brain functioning in psychiatric disorders. The retina is organized in layers of specialized neurons which share similar functional properties with brain neurons. The functioning of these neurons can be evaluated by electrophysiological techniques named electroretinogram (ERG). Since the study of retinal functioning gives a unique opportunity to have an indirect access to brain neurons, retinal dysfunctions observed in psychiatric disorders inform on brain abnormalities. Up to now, retinal dysfunctions observed in psychiatric disorders provide indicators for diagnosis, identification of subgroups of patients, prognosis, evaluation, and prediction of treatment response. The use of signal processing and machine learning applied on ERG data enhances retinal markers extraction, thus providing robust, reproducible, and reliable retinal electrophysiological markers to identify biosignatures in precision psychiatry. We propose that retinal electrophysiology may be considered as a new approach in the domain of electrophysiology and could now be added to the routine evaluations in psychiatric disorders. Retinal electrophysiology may provide, in combination with other approaches and techniques, sets of biomarkers to produce biosignatures in mental health.
The electroretinogram (ERG) has been employed for years to collect information about retinal function and pathology. The usefulness of this noninvasive test depends on our understanding of the cell sources that generate the ERG. Important contributors to the ERG are glial Müller cells (MCs), which are capable of generating substantial transretinal potentials in response to light-induced changes in extracellular K+ concentration ([K+]o). For instance, the MCs generate the slow PIII (sPIII) component of the ERG as a reaction to a photoreceptor-induced [K+]o decrease in the subretinal space. Similarly, an increase of [K+]o related to activity of postreceptor retinal neurons also produces transretinal glial currents, which can potentially influence the amplitude and shape of the b-wave, one of the most frequently analyzed ERG components. Although it is well documented that the majority of the b-wave originates from On-bipolar cells, some contribution from MCs was suggested many years ago and has never been experimentally rejected. In this work, detailed information about light-evoked [K+]o changes in the isolated mouse retina was collected and then analyzed with a relatively simple linear electrical model of MCs. The results demonstrate that the cornea-positive potential generated by MCs is too small to contribute noticeably to the b-wave. The analysis also explains why MCs produce the large cornea-negative sPIII subcomponent of the ERG, but no substantial cornea-positive potential.
Our previous research showed that increased phosphorylation of connexin (Cx)36 indicated extended coupling of AII amacrine cells (ACs) in the rod-dominant mouse myopic retina. This research will determine whether phosphorylation at serine 276 of Cx35-containing gap junctions increased in the myopic chicken, whose retina is cone-dominant. Refractive errors and ocular biometric dimensions of 7-days-old chickens were determined following 12 h and 7 days induction of myopia by a −10D lens. The expression pattern and size of Cx35-positive plaques were examined in the early (12 h) and compensated stages (7 days) of lens-induced myopia (LIM). At the same time, phosphorylation at serine 276 (functional assay) of Cx35 in strata 5 (S5) of the inner plexiform layer was investigated. The axial length of the 7 days LIM eyes was significantly longer than that of non-LIM controls (P < 0.05). Anti-phospho-Ser276 (Ser276-P)-labeled plaques were significantly increased in LIM retinas at both 12 h and 7 days. The density of Ser276-P of Cx35 was observed to increase after 12 h LIM. In the meanwhile, the areas of existing Cx35 plaques did not change. As there was more phosphorylation of connexin35 at Ser276 at both the early and late stages (12 h) and 7 days of LIM chicken retinal activity, the coupling with ACs could be increased in myopia development of the cone-dominated chicken retina.
Diabetic retinopathy remains a leading cause of blindness despite recent advance in therapies. Traditionally, this complication of diabetes was viewed predominantly as a microvascular disease but research has pointed to alterations in ganglion cells, glia, microglia, and photoreceptors as well, often occurring without obvious vascular damage. In neural tissue, the microvasculature and neural tissue form an intimate relationship with the neural tissue providing signaling cues for the vessels to form a distinct barrier that helps to maintain the proper neuronal environment for synaptic signaling. This relationship has been termed the neurovascular unit (NVU). Research is now focused on understanding the cellular and molecular basis of the neurovascular unit and how diabetes alters the normal cellular communications and disrupts the cellular environment contributing to loss of vision in diabetes.
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark–light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.
Although much is known about the visual system of vertebrates in general, studies regarding vision in reptiles, and snakes in particular, are scarce. Reptiles display diverse ocular structures, including different types of retinae such as pure cone, mostly rod, or duplex retinas (containing both rods and cones); however, the same five opsin-based photopigments are found in many of these animals. It is thought that ancestral snakes were nocturnal and/or fossorial, and, as such, they have lost two pigments, but retained three visual opsin classes. These are the RH1 gene (rod opsin or rhodopsin-like-1) expressed in rods and two cone opsins, namely LWS (long-wavelength-sensitive) and SWS1 (short-wavelength-sensitive-1) genes. Until recently, the study of snake photopigments has been largely ignored. However, its importance has become clear within the past few years as studies reconsider Walls’ transmutation theory, which was first proposed in the 1930s. In this study, the visual pigments of Bothrops atrox (the common lancehead), a South American pit viper, were examined. Specifically, full-length RH1 and LWS opsin gene sequences were cloned, as well as most of the SWS1 opsin gene. These sequences were subsequently used for phylogenetic analysis and to predict the wavelength of maximum absorbance (λmax) for each photopigment. This is the first report to support the potential for rudimentary color vision in a South American viper, specifically a species that is regarded as being nocturnal.
In age-related macular degeneration (AMD), the processing of fine details in a visual scene, based on a high spatial frequency processing, is impaired, while the processing of global shapes, based on a low spatial frequency processing, is relatively well preserved. The present fMRI study aimed to investigate the residual abilities and functional brain changes of spatial frequency processing in visual scenes in AMD patients. AMD patients and normally sighted elderly participants performed a categorization task using large black and white photographs of scenes (indoors vs. outdoors) filtered in low and high spatial frequencies, and nonfiltered. The study also explored the effect of luminance contrast on the processing of high spatial frequencies. The contrast across scenes was either unmodified or equalized using a root-mean-square contrast normalization in order to increase contrast in high-pass filtered scenes. Performance was lower for high-pass filtered scenes than for low-pass and nonfiltered scenes, for both AMD patients and controls. The deficit for processing high spatial frequencies was more pronounced in AMD patients than in controls and was associated with lower activity for patients than controls not only in the occipital areas dedicated to central and peripheral visual fields but also in a distant cerebral region specialized for scene perception, the parahippocampal place area. Increasing the contrast improved the processing of high spatial frequency content and spurred activation of the occipital cortex for AMD patients. These findings may lead to new perspectives for rehabilitation procedures for AMD patients.
The relationship between hypertension and epistaxis is controversial and poorly understood. The present research investigated atherosclerosis as a potential risk factor in hypertensive patients with epistaxis.
Methods:
A prospective study of 141 hypertensive patients with epistaxis was conducted. The laboratory tests included full blood count, lipid profile and coagulation profile. All patients underwent funduscopic examination of the eye and were classified in terms of four retinopathy grades.
Results:
There were strong positive correlations between the number of nosebleeds and retinopathy grade and low-density lipoprotein cholesterol level. There were weak correlations between the number of nosebleeds and blood pressure readings and triglycerides levels. Patients with grade III retinopathy, suggesting atherosclerosis, suffered from more frequent nosebleeds than other patients.
Conclusion:
Atherosclerosis is one of the potential risk factors in hypertensive patients with epistaxis. This may have an impact on treatment choices.
Prior optical coherence tomography (OCT) studies of schizophrenia have identified thinning of retinal layers. However, findings have varied across reports, and most studies have had serious methodological limitations. To address unresolved issues, we determined whether: (1) retinal thinning in schizophrenia occurs independently of comorbid medical conditions that affect the retina; (2) thinning is independent of antipsychotic medication dose; (3) optic nerve parameters are abnormal in schizophrenia; and (4) OCT indices are related to visual and cognitive impairments common in schizophrenia.
Methods
A total of 32 people with schizophrenia and 32 matched controls participated. Spectral domain OCT generated data on retinal nerve fiber layer (RNFL), macula, and ganglion cell-inner plexiform layer (GCL-IPL) thickness, in addition to cup volume and the cup-to-disc ratio at the optic nerve head. Subjects with schizophrenia also completed measures of symptoms, visual processing, and IQ.
Results
The groups did not differ on RNFL, macula, or GCL-IPL thickness. However, thinning of these layers was related to the presence of diabetes or hypertension across the sample as a whole. The schizophrenia group demonstrated enlarged cup volume and an enlarged cup-to-disc ratio in both eyes, which were unrelated to medical comorbidity, but were related to increased cognitive symptoms.
Conclusions
Past reports of retinal thinning may be artifacts of medical comorbidity that is over-represented in schizophrenia, or other confounds. However, optic nerve head abnormalities may hold promise as biomarkers of central nervous system abnormality, including cognitive decline, in schizophrenia.