To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the question of when a Jacobian of a curve of genus $2g$ admits a $(2,2)$-isogeny to a product of two polarized dimension g abelian varieties. We find that one of them must be a Jacobian itself and, if the associated curve is hyperelliptic, so is the other.
For $g=2,$ this allows us to describe $(2,2)$-decomposable genus $4$ Jacobians in terms of Prym varieties. We describe the locus of such genus $4$ curves in terms of the geometry of the Igusa quartic threefold. We also explain how our characterization relates to Prym varieties of unramified double covers of plane quartic curves, and we describe this Prym map in terms of $6$ and $7$ points in $\mathbb {P}^3$.
We also investigate which genus $4$ Jacobians admit a $2$-isogeny to the square of a genus $2$ Jacobian and give a full description of the hyperelliptic ones. While most of the families we find are of the expected dimension $1$, we also find a family of unexpectedly high dimension $2$.
We consider the Prym map from the space of double coverings of a curve of genus g with r branch points to the moduli space of abelian varieties. We prove that 𝒫:ℛg,r→𝒜δg−1+r/2 is generically injective if We also show that a very general Prym variety of dimension at least 4 is not isogenous to a Jacobian.
Given a curve of genus 3 with an unramified double cover, we give an explicit description of the associated Prym variety. We also describe how an unramified double cover of a non-hyperelliptic genus 3 curve can be mapped into the Jacobian of a curve of genus 2 over its field of definition and how this can be used to perform Chabauty- and Brauer–Manin-type calculations for curves of genus 5 with an fixed-point-free involution. As an application, we determine the rational points on a smooth plane quartic and give examples of curves of genus 3 and 5 violating the Hasse principle. The methods are, in principle, applicable to any genus 3 curve with a double cover. We also show how these constructions can be used to design smooth plane quartics with specific arithmetic properties. As an example, we give a smooth plane quartic with all 28 bitangents defined over . By specialization, this also gives examples over .
Let $(P,\Xi)$ be the naturally polarized model of the Prym variety associated to the étale double cover $\pi : \tilde C\rightarrow C$ of smooth connected curves defined over an algebraically closed field k of characteristic $\ne 2$, where genus(C) = $g \ge 3$, Pic$^{(2g-2)}(\tilde C) \supset P = \{\mathcal L \in {\rm Pic}^{(2g-2)}(\tilde C) : {\rm Nm}(\mathcal L) = \omega_C$ and $h^0(\tilde C,\mathcal L)$ is even\} is the Prym variety, and $P \supset \Xi = \{\mathcal L \in P: h^0(\tilde C,\mathcal L) >0 \}$ is the Prym theta divisor with its reduced scheme structure. If $\mathcal L$ is any point on $\Xi$, we prove that ‘Riemann's singularity theorem holds at $\mathcal L$’, i.e. mult$_{\mathcal L}(\Xi) = (1/2)h^0(\tilde C,\mathcal L)$, if and only if $\mathcal L$ cannot be expressed as $\pi^*(\mathcal M)(B)$ where $B \ge 0$ is an effective divisor on $\tilde C$, and $\mathcal M$ is a line bundle on C with $h^0(C,\mathcal M) >(1/2)h^0(\tilde C,\mathcal L)$. This completely characterizes points of $\Xi$ where the tangent cone is the set theoretic restriction of the tangent cone of $\tilde {\Theta}$, hence also those points on $\Xi$ where Mumford's Pfaffian equation defines the tangent cone to $\Xi$.
In this paper, we show that the Chern classes ck of the de Rham bundle ${\cal H}_{{\rm d}R}$ defined on any ‘good’ toroidal compactification $\bar{\cal A}_g$ of the moduli space of Abelian varieties of dimension g are zero in the rational Chow ring of $\bar{\cal A}_g$, for g = 4, 5 and k>0.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.