The application of Bayesian networks for monitoring and diagnosis of a multistage manufacturing process is described. Bayesian network “part models” were designed to represent individual parts in-process. These were combined to form a “process model,” a Bayesian network model of the entire manufacturing process. An efficient procedure is designed for managing the “process network.” Simulated data is used to test the validity of diagnosis made from this method. In addition, a critical analysis of this method is given, including computation speed concerns, accuracy of results, and ease of implementation. Finally, a discussion on future research in the area is given.