To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It was proved in [11, J. Funct. Anal., 2020] that the Cauchy problem for some Oldroyd-B model is well-posed in $\dot{B}^{d/p-1}_{p,1}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,1}(\mathbb{R}^d)$ with $1\leq p \lt 2d$. In this paper, we prove that the Cauchy problem for the same Oldroyd-B model is ill-posed in $\dot{B}^{d/p-1}_{p,r}(\mathbb{R}^d) \times \dot{B}^{d/p}_{p,r}(\mathbb{R}^d)$ with $1\leq p\leq \infty$ and $1 \lt r\leq\infty$ due to the lack of continuous dependence of the solution.
This paper studies the regularity results of classical solutions to the two-dimensional critical Oldroyd-B model in the corotational case. The critical case refers to the full Laplacian dissipation in the velocity or the full Laplacian dissipation in the non-Newtonian part of the stress tensor. Whether or not their classical solutions develop finite time singularities is a difficult problem and remains open. The object of this paper is two-fold. Firstly, we establish the global regularity result to the case when the critical case occurs in the velocity and a logarithmic dissipation occurs in the non-Newtonian part of the stress tensor. Secondly, when the critical case occurs in the non-Newtonian part of the stress tensor, we first present many interesting global a priori bounds, then establish a conditional global regularity in terms of the non-Newtonian part of the stress tensor. This criterion comes naturally from our approach to obtain a global L∞-bound for the vorticity ω.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.