To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given $n$ convex bodies in the Euclidean space $\mathbb{R}^d$, we can find their volume polynomial which is a homogeneous polynomial of degree $d$ in $n$ variables. We consider the set of homogeneous polynomials of degree $d$ in $n$ variables that can be represented as the volume polynomial of any such given convex bodies. This set is a subset of the set of Lorentzian polynomials. Using our knowledge of operations that preserve the Lorentzian property, we give a complete classification of the cases for $(n,d)$ when the two sets are equal.
We prove that projective spaces of Lorentzian and real stable polynomials are homeomorphic to Euclidean balls. This solves a conjecture of June Huh and the author. The proof utilises and refines a connection between the symmetric exclusion process in interacting particle systems and the geometry of polynomials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.