We establish a one-to-one correspondence between Kähler metrics in a given conformal class and parallel sections of a certain vector bundle with conformally invariant connection, where the parallel sections satisfy a set of non-linear algebraic constraints that we describe. The vector bundle captures 2-form prolongations and is isomorphic to
$\Lambda^3(\mathcal{T})$, where
${\mathcal{T}}$ is the tractor bundle of conformal geometry, but the resulting connection differs from the normal tractor connection by curvature terms.
Our analysis leads to a set of obstructions for a Riemannian metric to be conformal to a Kähler metric. In particular, we find an explicit algebraic condition for a Weyl tensor which must hold if there exists a conformal Killing–Yano tensor, which is a necessary condition for a metric to be conformal to Kähler. This gives an invariant characterization of algebraically special Riemannian metrics of type D in dimensions higher than four.