To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Pell–Abel equation is a functional equation of the form $P^{2}-DQ^{2} = 1$, with a given polynomial $D$ free of squares and unknown polynomials $P$ and $Q$. We show that the space of Pell–Abel equations with the degrees of $D$ and of the primitive solution $P$ fixed is a complex manifold. We describe its connected components by an efficiently computable invariant. Moreover, we give various applications of this result, including to torsion pairs on hyperelliptic curves and to Hurwitz spaces, and a description of the connected components of the space of primitive $k$-differentials with a unique zero on genus $2$ Riemann surfaces.
For $2 \leq d \leq 5$, we show that the class of the Hurwitz space of smooth degree $d$, genus $g$ covers of $\mathbb {P}^1$ stabilizes in the Grothendieck ring of stacks as $g \to \infty$, and we give a formula for the limit. We also verify this stabilization when one imposes ramification conditions on the covers, and obtain a particularly simple answer for this limit when one restricts to simply branched covers.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
We prove that algebraic solutions of Garnier systems in the irregular case are of two types. The classical ones come from isomonodromic deformations of linear equations with diagonal or dihedral differential Galois group; we give a complete list in the rank-2 case (two indeterminates). The pull-back ones come from deformations of coverings over a fixed degenerate hypergeometric equation; we provide a complete list when the differential Galois group is $\text{SL}_{2}(\mathbb{C})$. As a byproduct, we obtain a complete list of algebraic solutions for the rank-2 irregular Garnier systems.
One can easily show that any meromorphic function on a complex closed Riemann surface can be represented as a composition of a birational map of this surface to $\mathbb{C}{{\mathbb{P}}^{2}}$ and a projection of the image curve froman appropriate point $p\in \mathbb{C}{{\mathbb{P}}^{2}}$ to the pencil of lines through $p$. We introduce a natural stratification of Hurwitz spaces according to the minimal degree of a plane curve such that a given meromorphic function can be represented in the above way and calculate the dimensions of these strata. We observe that they are closely related to a family of Severi varieties studied earlier by J. Harris, Z. Ran, and I. Tyomkin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.