To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this chapter is to understand how quantum particles react to magnetic fields. There are a number of reasons to do be interested in this. First, quantum particles do extraordinary things when subjected to magnetic fields, including forming exotic states of matter known as quantum Hall fluids. But, in addition, magnetic fields bring a number of new conceptual ideas to the table. Among other things, this is where we first start to see the richness that comes from combining quantum mechanics with the gauge fields of electromagnetism.
This textbook provides an accessible introduction to quantum field theory and the Standard Model of particle physics. It adopts a distinctive pedagogical approach with clear, intuitive explanations to complement the mathematical exposition. The book begins with basic principles of quantum field theory, relating them to quantum mechanics, classical field theory, and statistical mechanics, before building towards a detailed description of the Standard Model. Its concepts and components are introduced step by step, and their dynamical roles and interactions are gradually established. Advanced topics of current research are woven into the discussion and key chapters address physics beyond the Standard Model, covering subjects such as axions, technicolor, and Grand Unified Theories. This book is ideal for graduate courses and as a reference and inspiration for experienced researchers. Additional material is provided in appendices, while numerous end-of-chapter problems and quick questions reinforce the understanding and prepare students for their own research.
We discuss the physics of pseudomagnetic field,s which can be induced in graphene by applying strains, and show how they can be used to manipulate electronic transport through graphene heterostructures (strain engineering). We consider strain-induced pseudo-Landau levels, which were observed in graphene, and discuss the related valley quantum Hall effect. At the end of this chapter we demonstrate that a combination of strain and electric gating can open energy gap in electron spectrum of graphene which can be potentially interesting for applications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.