To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates structural abnormalities in hippocampal subfield volumes and shapes, and their association with plasma CC chemokines in individuals with major depressive disorder (MDD).
Methods
A total of 61 patients with MDD and 65 healthy controls (HC) were recruited. All participants underwent high-resolution T1-weighted imaging and provided blood samples for the detection of CC chemokines (CCL2, CCL7, and CCL11). Comparisons of hippocampal subregion volumes, surface shapes, and plasma CC chemokine concentrations were conducted between the MDD and HC groups. Furthermore, partial correlation analysis was performed to assess the relationship between structural abnormalities (hippocampal subfield volume and shape) and plasma CC chemokine levels.
Results
The MDD group exhibited a significant reduction in the volume of the left hippocampal tail compared to the HC group (F = 9.750, Bonferroni-corrected p = 0.026). No significant outward or inward deformation of the hippocampus was detected in MDD patients relative to the HC group (all FWE-corrected p > 0.05). Additionally, plasma CCL11 levels were elevated in the MDD group compared to the HC group (F = 9.982, p = 0.002), with these levels showing a positive correlation with the duration of the illness (r = 0.279, p = 0.029). Partial correlation analysis further revealed a negative correlation between the smaller left hippocampal tail volume and plasma CCL11 levels in MDD patients (r = −0.416, p = 0.001).
Conclusion
Abnormally elevated plasma CCL11 in MDD patients may mediate damage to specific hippocampal substructures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.