To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Banach algebra $A$ is said to be a zero Jordan product determined Banach algebra if, for every Banach space $X$, every bilinear map $\unicode[STIX]{x1D711}:A\times A\rightarrow X$ satisfying $\unicode[STIX]{x1D711}(a,b)=0$ whenever $a$, $b\in A$ are such that $ab+ba=0$, is of the form $\unicode[STIX]{x1D711}(a,b)=\unicode[STIX]{x1D70E}(ab+ba)$ for some continuous linear map $\unicode[STIX]{x1D70E}$. We show that all $C^{\ast }$-algebras and all group algebras $L^{1}(G)$ of amenable locally compact groups have this property and also discuss some applications.
We study the second dual algebra of a Banach algebra and related problems. We resolve some questions raised by Ülger, which are related to Arens products. We then discuss a question of Gulick on the radical of the second dual algebra of the group algebra of a discrete abelian group and give an application of Arens regularity to Fourier and Fourier–Stieltjes transforms.
This note corrects an error in our paper “A Galois correspondence for reduced crossed products of unital simple $\text{C}^{\ast }$-algebras by discrete groups”, http://dx.doi.org/10.4153/CJM-2018-014-6. The main results of the original paper are unchanged.
Let $n$ be a positive integer. A $C^{\ast }$-algebra is said to be $n$-subhomogeneous if all its irreducible representations have dimension at most $n$. We give various approximation properties characterising $n$-subhomogeneous $C^{\ast }$-algebras.
Very recently, Karder and Petek completely described maps on density matrices (positive semidefinite matrices with unit trace) preserving certain entropy-like convex functionals of any convex combination. As a result, maps could be characterized that preserve von Neumann entropy or Schatten $p$-norm of any convex combination of quantum states (whose mathematical representatives are the density matrices). In this note we consider these latter two problems on the set of invertible density operators, in a much more general setting, on the set of positive invertible elements with unit trace in a $C^{\ast }$-algebra.
Let a discrete group $G$ act on a unital simple $\text{C}^{\ast }$-algebra $A$ by outer automorphisms. We establish a Galois correspondence $H\mapsto A\rtimes _{\unicode[STIX]{x1D6FC},r}H$ between subgroups of $G$ and $\text{C}^{\ast }$-algebras $B$ satisfying $A\subseteq B\subseteq A\rtimes _{\unicode[STIX]{x1D6FC},r}G$, where $A\rtimes _{\unicode[STIX]{x1D6FC},r}G$ denotes the reduced crossed product. For a twisted dynamical system $(A,G,\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D70E})$, we also prove the corresponding result for the reduced twisted crossed product $A\rtimes _{\unicode[STIX]{x1D6FC},r}^{\unicode[STIX]{x1D70E}}G$.
In this paper, we study the boundary quotient $\text{C}^{\ast }$-algebras associated with products of odometers. One of our main results shows that the boundary quotient $\text{C}^{\ast }$-algebra of the standard product of $k$ odometers over $n_{i}$-letter alphabets $(1\leqslant i\leqslant k)$ is always nuclear, and that it is a UCT Kirchberg algebra if and only if $\{\ln n_{i}:1\leqslant i\leqslant k\}$ is rationally independent, if and only if the associated single-vertex $k$-graph $\text{C}^{\ast }$-algebra is simple. To achieve this, one of our main steps is to construct a topological $k$-graph such that its associated Cuntz–Pimsner $\text{C}^{\ast }$-algebra is isomorphic to the boundary quotient $\text{C}^{\ast }$-algebra. Some relations between the boundary quotient $\text{C}^{\ast }$-algebra and the $\text{C}^{\ast }$-algebra $\text{Q}_{\mathbb{N}}$ introduced by Cuntz are also investigated.
We show that, under special hypotheses, each 3-Jordan homomorphism ${\it\varphi}$ between Banach algebras ${\mathcal{A}}$ and ${\mathcal{B}}$ is a 3-homomorphism.
From the viewpoint of $C^{\ast }$-dynamical systems, we define a weak version of the Haagerup property for the group action on a $C^{\ast }$-algebra. We prove that this group action preserves the Haagerup property of $C^{\ast }$-algebras in the sense of Dong [‘Haagerup property for $C^{\ast }$-algebras’, J. Math. Anal. Appl.377 (2011), 631–644], that is, the reduced crossed product $C^{\ast }$-algebra $A\rtimes _{{\it\alpha},\text{r}}{\rm\Gamma}$ has the Haagerup property with respect to the induced faithful tracial state $\widetilde{{\it\tau}}$ if $A$ has the Haagerup property with respect to ${\it\tau}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.