To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work investigated the effect of zinc oxide nanoparticles functionalized with curcumin (ZnO(np)+CUR) supplementation during the in vitro maturation (IVM) of bovine oocytes on the in vitro embryo production and the cellular antioxidant response. A total of 1,625 cumulus-oocyte complexes (COCs) were cultured in the maturation medium in the absence (0 µM - control) or presence of different concentrations of ZnO(np)+CUR (3 µM, 6 µM or 12 µM). After IVM, COCs were destined either to 1) in vitro embryo production or 2) analysis of reactive oxygen species production, superoxide dismutase (SOD) activity, catalase (CAT) activity and total antioxidant capacity (FRAP). The results demonstrated that the addition of 6 and 12 µM ZnO(np)+CUR during in vitro maturation showed a higher rate of blastocyst production when compared to the control (p < 0.05). However, only 12 µM ZnO(np)+CUR treatment showed higher rates of embryo production when compared to 3µM ZnO(np)+CUR treatment. Supplementation of IVM medium with 6 µM ZnO(np)+CUR reduced ROS production (p < 0.05) compared to control and 12 µM ZnO(np)+CUR treatments. Also, the treatment containing ZnO(np)+CUR at 12 µM had lower SOD activity after IVM than control treatment. In conclusion, the best outcome for in vitro embryo production was obtained when 6 and 12 µM ZnO(np)+CUR was added during IVM of bovine oocytes. However, this improvement in in vitro embryo production was not associated with either the reduction of ROS production or SOD and CAT activities.
Age is the main risk factor for many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia. Despite our limited understanding of cellular mechanisms of aging-associated neuronal loss, an increasing number of studies demonstrate that oxidative stress and inflammation are key drivers. Epidemiological studies indicate that diet during middle adulthood can influence the risk of developing neurodegenerative diseases later in life, so it is important to investigate dietary interventions to combat oxidative stress and inflammation. In this study, we hypothesized that treatment with fucoxanthin, a marine carotenoid with strong antioxidant properties, prevents aging-associated oxidative stress that is known to be related to natural brain aging. Treatment with fucoxanthin protected rat primary hippocampal neurons against oxidative stress and aging in vitro. In our in vivo study, middle-aged male Sprague-Dawley rats were gavaged with fucoxanthin (1 mg/kg, 5 days/week, n=6) or vehicle (n=6) for 4 weeks. After supplementation was completed, brain samples were harvested and subjected to quantitative and bioinformatic analyses. Fucoxanthin was detected and shown to decrease lipid peroxidation in the brains of the animals supplemented with fucoxanthin. Microarray analysis showed that treatment with fucoxanthin changed 5602 genes. Together, our results suggest that treatment with fucoxanthin prevents aging-associated oxidative stress and is capable of regulating genes that potentially ameliorate age-related changes to the brain.
The reproductive efficiency of dairy cows decreases significantly in hot climates. Exposure to heat stress causes damage to different stages of the reproductive cycle including a decrease in the quality of oocytes. Antioxidant supplementation has been introduced as one of the main approaches to alleviate the effects of free radical damage associated with heat stress. Gamma-oryzanol (ORY), a component of rice bran oil, is introduced as a novel antioxidant. As a supplement of culture media for maturation, the effect of ORY on the development of heat-shocked bovine cumulus–oocyte complexes was evaluated in this study. At the end of maturation in vitro using the heat-shock model, a higher proportion of metaphase II oocytes (0.78 ± 0.03 vs 0.42 ± 0.03) and lower metaphase I and germinal vesicle breakdown (0.10 ± 0.02 vs 0.38 ± 0.03) were recorded for the treated group (N = 205) in comparison with the control (N = 203) (P < 0.05). Moreover, the treatment exerted upregulation of NRF2, SOD, CAT and GPX transcripts in matured oocytes and GPX in CCs, along with a considerable increase in the cleavage (0.52 ± 0.04 vs 0.33 ± 0.03) and total blastocyst rates (0.30 ± 0.03 vs 0.14 ± 0.02) (P < 0.05). These results showed that ORY increased the mRNA expression of the transcripts associated with antioxidant enzymes and enhanced the developmental potential of heat-shocked bovine oocytes and warranted further studies to explore this antioxidant’s influence on improving dairy cattle’s reproductive efficiency during heat stress.
This study aimed to evaluate the effects of acetyl-L-carnitine on follicle survival and growth, stromal cell density and extracellular matrix, as well as on the expression of mRNA for nuclear factor erythroid 2-related factor (NRF2), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxin 6 (PRDX6) in cultured bovine ovarian cortical tissues. Ovarian fragments (3 × 3 × 1 mm) were cultured for 6 days in α-MEM+ alone or supplemented with 10, 50 or 100 μM acetyl-L-carnitine at 38.5°C with 5% CO2 in humidified air. Before (non-cultured tissues) and after culture, the ovarian fragments were fixed in 4% paraformaldehyde for 12 h for histological analysis or stored at –80ºC for mRNA expression analysis of NRF2, SOD, CAT, PRDX6 and GPX1. The results showed that 100 μM acetyl-L-carnitine increased the percentages of morphologically normal follicles and stromal cell density in cultured ovarian tissues. On the other hand, acetyl-L-carnitine did not influence the percentage of collagen in ovarian tissue nor the expression of mRNAs for NRF2, SOD, CAT, PRDX6 and GPX1. In conclusion, 100 μM acetyl-L-carnitine increased follicle survival and stromal cell density in cultured bovine ovarian tissues but does not influence collagen fibre distribution or the expression of mRNAs for NRF2, SOD, CAT, PRDX6 and GPX1.
The primary causes of female mortality often involve diseases related to oxidative stress. Dietary total antioxidant capacity (TAC) evaluates its antioxidant content and potential health effects. This study, registered with PROSPERO (ID: CRD42024427784), explores the association between dietary TAC and women’s health outcomes, including endocrine conditions with gynaecological implications, obstetric outcomes, gynaecological conditions and oncological diseases related to the female reproductive system. We conducted a systematic search in MEDLINE (via PubMed), EMBASE, LILACS and CINAHL for observational studies published up to February 2024 that explored the relationship between dietary TAC and these health conditions. Data were analysed using RevMan 5·4 software. Nineteen studies met the eligibility criteria (sample sizes: 64–3209 women) and examined various conditions, including neoplasms (breast, endometrial and ovarian), bacterial vaginosis, menopause, polycystic ovary syndrome (PCOS), pre-eclampsia (PE), gestational diabetes mellitus (GDM), miscarriage, infertility and inflammation and oxidative stress markers. The meta-analysis identified a significant association between dietary TAC, measured in vitamin C equivalents, and breast cancer, revealing that women with the disease had a lower dietary TAC due to reduced antioxidant intake. Mixed results were found for endometrial cancer, while higher TAC levels were associated with a lower risk of PCOS and infertility. Among postmenopausal women, higher TAC correlated with fewer symptoms such as sleep issues and anxiety. In gestational conditions, higher dietary TAC was linked to a lower risk of miscarriage, GDM and PE. Twelve of the nineteen studies demonstrated significant associations between dietary TAC and the outcomes of interest.
The aim of this study was to investigate the antioxidant effect of alpha-lipoic acid (α-LA) in dairy cows and its metabolic mechanism. Thirty Holstein cows weighing 550 ± 25 kg, 200 ± 15 days of lactation and calving 2–3 times were randomly divided into three groups, ten cows in each group. Different doses of α-LA were added based on body weight: 0 (CTL), 30 (LA-L) and 60 (LA-H) mg/kg per head per day; 7 days adaptation period, 30 days formal period. Milk production was recorded daily during the test period. Milk and blood samples were collected on the last day. ELISA kits and automatic biochemical analyser were used to detect the indicators in blood; serum metabolites were detected and analysed by non-target metabolomics. The results of the study showed that the addition of α-LA significantly increased milk yield; blood concentrations for HDL, triglyceride, cortisol and triiodothyronine were significantly elevated; and levels of glutathione reductase and nitric oxide synthase were significantly reduced in LA-L group as compared to CTL group. The concentrations of IL-1β, IL-2, TNF-α, IgG and IgA were significantly higher after supplementation with α-LA. Metabolomics analysis revealed 13 and 15 differential metabolites each in positive or negative modes. Methylmalonic acid levels were significantly higher following α-LA supplementation compared to CTL group, as were D-lactose, D-maltose and oleanolic acid levels in LA-L group. In summary, α-LA can enhance milk production, improve antioxidant capacity and immunity, and is more beneficial for animal production and economic benefits at 30 mg/kg.
Spontaneous abortion (SA) is considered one of the most prevalent adverse outcomes of pregnancy. SA may occur due to genetic susceptibility and various maternal factors such as nutritional status. The aim of this study was to assess how dietary carotenoids and the FTO gene are related to SA. This case–control study included 192 women with a history of SA as the case group and 347 healthy women without history of SA as the control group. To evaluate carotenoid intake, a valid 168-item food frequency questionnaire (FFQ) was used. The FTO gene was genotyped for the presence of the rs9939609 polymorphism using the tetra-primer amplification refractory mutation system-polymerase chain (ARMS-PCR). The results indicated a significant negative association between dietary intake of β-cryptoxanthin and SA in carriers of the TT genotype of the FTO rs9939609 polymorphism after adjustment for age, BMI, physical activity, smoking, alcohol drinking, and calorie intake (β = −0.28, P = 0.02). No association was found between SA with dietary intake of beta-carotene, alpha-carotene, lutein, and lycopene among carriers of different FTO genotypes. The FTO genotype may have an effect on the association between SA and carotenoid intake. Dietary intake of β-cryptoxanthin may act as a protective factor against SA only in carriers of the TT genotype of the FTO rs9939609 polymorphism.
The scientific literature indicates that chokeberry is widely used as a supplement to support the maintenance of the body’s homeostasis by reducing inflammation and oxidative stress. In recent years, positive effects of chokeberry on intestinal parameters have also been observed. Oxidative stress, inflammation and, according to recent reports, also the gut microbiome are closely related to the overall well-being and health of the population. This study, therefore, attempts to summarise all the health benefits of black chokeberry supplementation. This study was registered in PROSPERO (International Prospective Register of Systematic Reviews) under registration number CRD42023395969. Additionally, the systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. Electronic databases were searched in Web of Science, PubMed, Scopus and EBSCO using the following combination of the words ‘chokeberry or aronia’ and ‘inflammation or oxidative stress or microbiota or microbiome or permeability or gut’. Ultimately, fifty-seven studies were summarised in the review. Data analysis showed that black chokeberry has a positive effect on the reduction of inflammation, oxidative stress and intestinal microflora, but the size of the changes varies and depends on many variables. Therefore, the researchers concluded that the compounds found in black chokeberry play a pivotal role in maintaining the overall balance within the system. This is a crucial consideration given the tendency for disturbances in organismal homeostasis to accompany disease processes and various disorders. However, further research is necessary to elucidate the mechanisms and optimise its use fully.
Water is essential for life on Earth, but many organisms are subject to water loss under certain environmental conditions and this can cause biological stress. However, some cyanobacteria and algae are capable of coping with periodic exposure to potentially desiccating conditions. Thus, phototrophs in biological soil crusts can survive in desert environments, even when the only source of water is dew. Other aquatic plants and algae can be exposed to emersion following seasonal changes in water level in rivers or lakes and, importantly, during the daily emersion of intertidal species. Seaweeds living in the intertidal are poikilohydric, and each time they are emersed, they risk water loss. Dehydration can lead to inhibition of photosynthesis and respiration as well as disruption to nutrient availability and assimilation. However, intertidal seaweeds have evolved a range of adaptations/acclimations that allow them to cope with exposure to air. These include morphologies that minimise surface area:volume ratio and biochemical changes that involve, for example, enhanced capacity for detoxification of reactive oxygen species. The extent to which seaweeds can recover function following re-immersion and differences in their capacity for nutrient uptake during restricted periods of immersion appear to be correlated with the zonation of species in the intertidal.
The antioxidant capacity and the inflammatory potential of diet during pregnancy may represent a prevention opportunity for allergic and respiratory diseases. We aimed to investigate the associations between the antioxidant and the inflammatory potential of maternal diet in the last 3 months of pregnancy with allergic and respiratory diseases in children. Analyses were performed on 9679 mother–child pairs from the ELFE birth cohort. The dietary total antioxidant capacity (DTAC), without coffee, was estimated with the Trolox equivalent antioxidant capacity (TEAC), the total radical trapping antioxidant parameter (TRAP) and the ferric reducing-antioxidant power (FRAP). The inflammatory potential of the maternal diet was assessed by the energy-adjusted dietary inflammatory index (E-DII). Allergic and respiratory diseases in children up to 5·5 years were considered jointly through five allergic and respiratory multimorbidity clusters (‘asymptomatic’ - reference, ‘early wheeze without asthma’, ‘asthma only’, ‘allergies without asthma’ and ‘multi-allergic’). Multinomial logistic regressions were performed and adjusted for main confounders. A diet with a higher antioxidant potential was associated with a lower risk of belonging to the ‘early wheeze without asthma’ cluster (aOR (95 % CI) = 0·95 (0·90, 0·99) per sd of TEAC score). A higher E-DII was associated with a higher risk of belonging to the ‘asthma only’ cluster (aOR (95 % CI) = 1·09 (1·00, 1·19) per sd). No association was found with the ‘allergies without asthma’ or ‘multi-allergic’ clusters. An antioxidant-rich diet during pregnancy was associated with better respiratory health, while a pro-inflammatory diet was associated with poorer respiratory health in children up to 5·5 years, though the associations were weak.
The aims of this study were to evaluate the doxorubicin concentration that induces toxic effects on in vitro culture of isolated mouse secondary follicles and to investigate whether resveratrol can inhibit or reduce this toxicity. Secondary follicles were isolated and cultured for 12 days in control medium (α-MEM+) or in α-MEM+ supplemented with doxorubicin (0.1 µg/ml) or different concentrations of resveratrol (0.5, 2, or 5 µM) associated with doxorubicin (0.1 µg/ml) (experiment 1). For experiment 2, follicles were cultured in α-MEM+ alone or supplemented with doxorubicin (0.3 µg/ml) or different concentrations of resveratrol (5 or 10 µM) associated or not with doxorubicin (0.3 µg/ml) (experiment 2). The endpoints analyzed were morphology (survival), antrum formation, follicular diameter, mitochondrial activity, glutathione (GSH) levels and DNA fragmentation. In the first experiment, doxorubicin (0.1 µg/ml) maintained survival and antrum formation similar to the control, while 5 µM resveratrol showed increased parameters, maintained mitochondrial activity and increased GSH levels compared to the control. In the second experiment, doxorubicin (0.3 µg/ml) reduced survival, antrum formation and follicular diameter compared to the control. Resveratrol at a concentration of 10 µM attenuated the damage caused by doxorubicin by improving follicular survival and did not present DNA fragmentation. In conclusion, supplementation of the in vitro culture medium with 0.3 µg/ml doxorubicin reduced the survival and impaired the development of mouse-isolated preantral follicles. Resveratrol at 10 µM reduced doxorubicin-induced follicular atresia, without DNA fragmentation in the follicles.
Mitochondrial dysfunction is a common feature of brain disorders. Mitochondria play a central role in oxidative phosphorylation; thus changes in energy metabolism in the brain have been reported in conditions such as Alzheimer’s disease, Parkinson’s disease, and stroke. In addition, mitochondria regulate cellular responses associated with neuronal damage such as the production of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), and apoptosis. Therefore, interventions that aim to protect mitochondria may be effective against brain disorders. Fucoxanthin is a marine carotenoid that has recently gained recognition for its neuroprotective properties. However, the cellular mechanisms of fucoxanthin in brain disorders, particularly its role in mitochondrial function, have not been thoroughly discussed. This review summarises the current literature on the effects of fucoxanthin on oxidative stress, neuroinflammation, and apoptosis using in vitro and in vivo models of brain disorders. We further present the potential mechanisms by which fucoxanthin protects mitochondria, with the objective of developing dietary interventions for a spectrum of brain disorders. Although the studies reviewed are predominantly preclinical studies, they provide important insights into understanding the cellular and molecular functions of fucoxanthin in the brain. Future studies investigating the mechanisms of action and the molecular targets of fucoxanthin are warranted to develop translational approaches to brain disorders.
This research aimed to examine the impact of varying levels of dietary copper (Cu) hydroxychloride on the performance, egg quality, yolk antioxidant capacity, tibia traits, and mineral excretion in laying quails. 125 female 10-week-old quails were randomly distributed into five experimental groups with five replicates, each consisting of five quails. Five experimental isonitrogenous and isoenergetic diets were designed to contain different Cu hydroxychloride (54% Cu) levels at 7.20 (basal diet), 15, 30, 45 and 60 mg/kg respectively. Quails were fed with trial diets for 12 weeks. Performance, egg production, eggshell quality, and biomechanical traits of the tibia were not impacted (P > 0.005) by variations in dietary Cu levels. Yolk antioxidant capacity, measured as yolk DPPH value, exhibited an increase (P < 0.01) in the high-dose group (60 mg/kg). Regarding tibia mineral concentration, Cu concentration decreased linearly (P < 0.001) with increasing Cu level, manganese and zinc content recorded the highest values in quails that had received 60 mg/kg Cu in the diet (P < 0.01), while the lowest phosphorus content was described for 45 and 60 mg/kg. Contrarily, increases (P < 0.01) in dietary Cu resulted in raised faecal Cu content, while phosphorus, manganese, and zinc, were reduced when Cu was added. It can be inferred that adding Cu to the diet of laying quails would not be necessary, which in turn decreases Cu excretion and prevents substantial environmental harm.
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Men with diabetes frequently experience spermatogenic dysfunction, which is the most significant sign that diabetes has harmed their ability to reproduce. The effect of various doses of the hydro-alcoholic extract of Nerium oleander leaves on the pituitary–gonadal axis, sperm motility and number, antioxidant system, changes in testicular tissue structure, and spermatogenesis in healthy and diabetic rats has been examined in the current study. Eighty male rats that had been streptozotocin-induced diabetic and healthy were divided into eight groups: (1) control, (2) Nerium (50 mg/kg), (3) Nerium (100 mg/kg), (4) Nerium (200 mg/kg), (5) DM (6) DM+Nerium (50 mg/kg), (7) DM+Nerium (100 mg/kg) and (8) DM+Nerium (200 mg/kg) and were administered orally for 48 days consecutive. Following the studies, analysis of the testicular tissues’ antioxidant capacity as well as sperm parameters, Johnsen’s scoring and morphometric evaluation, histology, biochemical and stereology studies were performed.
The outcomes showed that Nerium 50 and 100 mg/kg considerably enhanced the testicular morphology, sperm parameters, and reproductive organs to varying degrees in diabetic rats. After Nerium 50 mg/kg administration, glutathione peroxidase (GPX) and catalase (CAT) levels in the testicular tissue were increased whereas malondialdehyde (MDA) levels were markedly decreased. Nerium may help protect against diabetic-induced spermatogenic dysfunction in male rats by enhancing the activities of antioxidant enzymes in lower dosages.
The antibacterial, antifungal and antioxidant effects of halloysite nanoclay, Cloisite 10A (C10A) and Cloisite 15A (C15A) organonanoclays were examined in this study. The antimicrobial action was assessed using the agar-well method and the disc diffusion method. The free radical-scavenging effects of the clays were determined using the 2,2-diphenyl-1-picrylhydrazyl method. Halloysite showed antimicrobial activity against Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus. C10A was effective against both Gram-positive bacteria (S. aureus, Listeria monocytogenes, Bacillus subtilis and E. faecalis) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae and P. aeruginosa). Additionally, only C10A was found to have an antimicrobial effect on Candida glabrata of 18 mm amongst the tested clays. C15A showed an antimicrobial effect on S. aureus and K. pneumoniae. It was determined that the antifungal properties of organoclays were higher than those of halloysite. The most effective clay type was determined to be C10A. The positively charged inner surface of the halloysite nanoclay can provide a large area to which negatively charged free radicals can attach. The modified C15A used in this study has two long-chain alkyl groups attached, whereas the modified C10A has a single long-chain alkyl group and a benzyl group attached. It is proposed that the differences in these antimicrobial effects are due to the structures of the molecules. According to these results, organoclays as green source materials could be used as additives and coatings in food processing, biomedical devices, filters and paints due to their antimicrobial and antioxidant properties.
The effects of monolaurin (ML) on the health of piglets infected with porcine epidemic diarrhoea virus (PEDV) have not been fully understood. This study aimed to investigate its role in blood biochemical profile, intestinal barrier function, antioxidant function and the expression of antiviral genes in piglets infected with PEDV. Thirty-two piglets were randomly divided into four groups: control group, ML group, PEDV group and ML + PEDV group. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 d before PEDV infection. Results showed that PEDV infection significantly decreased D-xylose content and increased intestinal fatty acid-binding protein content, indicating that PEDV infection destroyed intestinal barrier and absorption function. While it could be repaired by ML administration. Moreover, ML administration significantly decreased plasma blood urea nitrogen and total protein content upon PEDV infection. These results suggested ML may increase protein utilisation efficiency. ML administration significantly decreased the number of large unstained cells and Hb and increased the number of leucocytes and eosinophils in the blood of PEDV-infected piglets, indicating ML could improve the immune defense function of the body. In the presence of PEDV infection, ML administration significantly increased superoxide dismutase and catalase activities in blood and colon, respectively, indicating ML could improve antioxidant capacity. Besides, ML administration reversed the expression of ISG15, IFIT3 and IL-29 throughout the small intestine and Mx1 in jejunum and ileum, indicating the body was in recovery from PEDV infection. This study suggests that ML could be used as a kind of feed additive to promote swine health upon PEDV infection.
Type 2 diabetes mellitus (T2DM) is one of the leading causes of death worldwide. Genetic factors, some underlying medical conditions, and obesity are risk factors of T2DM. Unlike other risk factors which are non-modifiable, obesity is preventable and usually treatable, and is largely contributed by lifestyle factors. Management of these lifestyle factors may curb the development of T2DM and reduces T2DM prevalence. Dietary vitamins have been recommended as a lifestyle modification intervention to support obesity treatment. Vitamins correlate negatively with body weight, body mass index and body composition. Some of the vitamins may also have anti-adipogenic, anti-inflammatory and antioxidant effects. However, results from pre-clinical and clinical studies of the effects of vitamins on obesity are inconsistent. A clear understanding of the effects of vitamins on obesity will help determine dietary intervention that is truly effective in preventing and treating obesity as well as obesity-related complications including T2DM. This article reviews existing evidences of the effects of vitamin supplementation on obesity and obesity-related metabolic status.