To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider a subcritical branching Markov chain. Let $Z_n$ denote the counting measure of particles of generation n. Under some conditions, we give a probabilistic proof for the existence of the Yaglom limit of $(Z_n)_{n\in\mathbb{N}}$ by the moment method, based on the spinal decomposition and the many-to-few formula. As a result, we give explicit integral representations of all quasi-stationary distributions of $(Z_n)_{n\in\mathbb{N}}$, whose proofs are direct and probabilistic, and do not rely on Martin boundary theory.
We initiate a study of large deviations for block model random graphs in the dense regime. Following [14], we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a ‘symmetric’ phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a ‘symmetry breaking’ regime, where the conditional structure is not a block model with compatible dimensions. This identifies a ‘reentrant phase transition’ phenomenon for this problem – analogous to one established for Erdős–Rényi random graphs [13, 14]. Finally, extending the analysis of [34], we identify the precise boundary between the symmetry and symmetry breaking regimes for homomorphism densities of regular graphs and the operator norm on Erdős–Rényi bipartite graphs.
We develop explicit bounds for the tail of the distribution of the all-time supremum of a random walk with negative drift, where the increments have a truncated heavy-tailed distribution. As an application, we consider a ruin problem in the presence of reinsurance.
In this paper we derive cumulant bounds for subgraph counts and power-weighted edge lengths in a class of spatial random networks known as weight-dependent random connection models. These bounds give rise to different probabilistic results, from which we mainly focus on moderate deviations of the respective statistics, but also show a concentration inequality and a normal approximation result. This involves dealing with long-range spatial correlations induced by the profile function and the weight distribution. We start by deriving the bounds for the classical case of a Poisson vertex set, and then provide extensions to α-determinantal processes.
We establish a sample path moderate deviation principle for the integrated shot noise process with Poisson arrivals and non-stationary noises. As in Pang and Taqqu (2019), we assume that the noise is conditionally independent given the arrival times, and the distribution of each noise depends on its arrival time. As applications, we derive moderate deviation principles for the workload process and the running maximum process for a stochastic fluid queue with the integrated shot noise process as the input; we also show that a steady-state distribution exists and derive the exact tail asymptotics.
We prove a large deviation principle for the slow-fast rough differential equations (RDEs) under the controlled rough path (RP) framework. The driver RPs are lifted from the mixed fractional Brownian motion (FBM) with Hurst parameter $H\in (1/3,1/2)$. Our approach is based on the continuity of the solution mapping and the variational framework for mixed FBM. By utilizing the variational representation, our problem is transformed into a qualitative property of the controlled system. In particular, the fast RDE coincides with Itô stochastic differential equation (SDE) almost surely, which possesses a unique invariant probability measure with frozen slow component. We then demonstrate the weak convergence of the controlled slow component by averaging with respect to the invariant measure of the fast equation and exploiting the continuity of the solution mapping.
We study a version of the Busemann-Petty problem for $\log $-concave measures with an additional assumption on the dilates of convex, symmetric bodies. One of our main tools is an analog of the classical large deviation principle applied to $\log $-concave measures, depending on the norm of a convex body. We hope this will be of independent interest.
This paper obtains logarithmic asymptotics of moderate deviations of the stochastic process of the number of customers in a many-server queue with generally distributed inter-arrival and service times under a heavy-traffic scaling akin to the Halfin–Whitt regime. The deviation function is expressed in terms of the solution to a Fredholm equation of the second kind. A key element of the proof is the large-deviation principle in the scaling of moderate deviations for the sequential empirical process. The techniques of large-deviation convergence and idempotent processes are used extensively.
In this article, we give explicit bounds on the Wasserstein and Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard normal distribution, using the results of Last et al. (Prob. Theory Relat. Fields165, 2016). Relying on the theory developed by Saulis and Statulevicius in Limit Theorems for Large Deviations (Kluwer, 1991) and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities, and normal approximation bounds with Cramér correction terms for the same variables. The aforementioned results are then applied to Poisson shot noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results of Hillairet et al. (ALEA19, 2022) and Khabou et al. (J. Theoret. Prob.37, 2024) regarding the normal approximation and those of Zhu (Statist. Prob. Lett.83, 2013) for moderate deviations.
This paper investigates the precise large deviations of the net loss process in a two-dimensional risk model with consistently varying tails and dependence structures, and gives some asymptotic formulas which hold uniformly for all x varying in t-intervals. The study is among the initial efforts to analyze potential risk via large deviation results for the net loss process of the two-dimensional risk model, and can provide a novel insight to assess the operation risk in a long run by fully considering the premium income factors of the insurance company.
We study the tail asymptotics of two functionals (the maximum and the sum of the marks) of a generic cluster in two sub-models of the marked Poisson cluster process, namely the renewal Poisson cluster process and the Hawkes process. Under the hypothesis that the governing components of the processes are regularly varying, we extend results due to [6, 19], notably relying on Karamata’s Tauberian Theorem to do so. We use these asymptotics to derive precise large-deviation results in the fashion of [32] for the just-mentioned processes.
This paper considers the family of invariant measures of Markovian mean-field interacting particle systems on a countably infinite state space and studies its large deviation asymptotics. The Freidlin–Wentzell quasipotential is the usual candidate rate function for the sequence of invariant measures indexed by the number of particles. The paper provides two counterexamples where the quasipotential is not the rate function. The quasipotential arises from finite-horizon considerations. However, there are certain barriers that cannot be surmounted easily in any finite time horizon, but these barriers can be crossed in the stationary regime. Consequently, the quasipotential is infinite at some points where the rate function is finite. After highlighting this phenomenon, the paper studies some sufficient conditions on a class of interacting particle systems under which one can continue to assert that the Freidlin–Wentzell quasipotential is indeed the rate function.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability of some random variables to a constant, and a weak convergence to a centered Gaussian distribution (when such random variables are properly centered and rescaled). We talk about noncentral moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper we prove a noncentral moderate deviation result for the bivariate sequence of sums and maxima of independent and identically distributed random variables bounded from above. We also prove a result where the random variables are not bounded from above, and the maxima are suitably normalized. Finally, we prove a moderate deviation result for sums of partial minima of independent and identically distributed exponential random variables.
This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on $l^2\times L^2((-\rho,\,0);l^2)$ with $\rho >0$. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.
We establish the exponential nonuniform Berry–Esseen bound for the maximum likelihood estimator of unknown drift parameter in an ultraspherical Jacobi process using the change of measure method and precise asymptotic analysis techniques. As applications, the optimal uniform Berry–Esseen bound and optimal Cramér-type moderate deviation for the corresponding maximum likelihood estimator are obtained.
The goal of this paper is to go further in the analysis of the behavior of the number of descents in a random permutation. Via two different approaches relying on a suitable martingale decomposition or on the Irwin–Hall distribution, we prove that the number of descents satisfies a sharp large-deviation principle. A very precise concentration inequality involving the rate function in the large-deviation principle is also provided.
Birth–death processes form a natural class where ideas and results on large deviations can be tested. We derive a large-deviation principle under an assumption that the rate of jump down (death) grows asymptotically linearly with the population size, while the rate of jump up (birth) grows sublinearly. We establish a large-deviation principle under various forms of scaling of the underlying process and the corresponding normalization of the logarithm of the large-deviation probabilities. The results show interesting features of dependence of the rate functional upon the parameters of the process and the forms of scaling and normalization.
A system of interacting multi-class finite-state jump processes is analyzed. The model under consideration consists of a block-structured network with dynamically changing multi-color nodes. The interactions are local and described through local empirical measures. Two levels of heterogeneity are considered: between and within the blocks where the nodes are labeled into two types. The central nodes are those connected only to nodes from the same block, whereas the peripheral nodes are connected to both nodes from the same block and nodes from other blocks. Limits of such systems as the number of nodes tends to infinity are investigated. In particular, under specific regularity conditions, propagation of chaos and the law of large numbers are established in a multi-population setting. Moreover, it is shown that, as the number of nodes goes to infinity, the behavior of the system can be represented by the solution of a McKean–Vlasov system. Then, we prove large deviations principles for the vectors of empirical measures and the empirical processes, which extends the classical results of Dawson and Gärtner (Stochastics20, 1987) and Léonard (Ann. Inst. H. Poincaré Prob. Statist.31, 1995).
We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E}|e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha > d$, we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable $\beta$-skeletons.
Large deviations of the largest and smallest eigenvalues of $\mathbf{X}\mathbf{X}^\top/n$ are studied in this note, where $\mathbf{X}_{p\times n}$ is a $p\times n$ random matrix with independent and identically distributed (i.i.d.) sub-Gaussian entries. The assumption imposed on the dimension size p and the sample size n is $p=p(n)\rightarrow\infty$ with $p(n)={\mathrm{o}}(n)$. This study generalizes one result obtained in [3].