To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset of a finite set of filling curves on a surface is not necessarily filling. However, when a filling set spans homology and curves intersect pairwise at most once, it is shown that one can always add a curve and subtract a different curve to obtain a filling set that spans homology. A motivation for filling sets of curves that span homology comes from the Thurston spine and the Steinberg module of the mapping class group.
We study random walks on metric spaces with contracting isometries. In this first article of the series, we establish sharp deviation inequalities by adapting Gouëzel’s pivotal time construction. As an application, we establish the exponential bounds for deviation from below, central limit theorem, law of the iterated logarithms, and the geodesic tracking of random walks on mapping class groups and CAT(0) spaces.
We study the relative $\mathrm {SU}(2,1)$-character varieties of the one-holed torus, and the action of the mapping class group on them. We use an explicit description of the character variety of the free group of rank two in $\mathrm {SU}(2,1)$ in terms of traces, which allow us to describe the topology of the character variety. We then combine this description with a generalization of the Farey graph adapted to this new combinatorial setting, using ideas introduced by Bowditch. Using these tools, we can describe an open domain of discontinuity for the action of the mapping class group which strictly contains the set of convex cocompact characters, and we give several characterizations of representations in this domain.
Let S be an orientable, connected surface of finite topological type, with genus $g \leqslant 2$, empty boundary and complexity at least 2; we prove that any graph endomorphism of the curve graph of S is actually an automorphism. Also, as a complement of the author’s previous results, we prove that under mild conditions on the complexity of the underlying surfaces, any graph morphism between curve graphs is induced by a homeomorphism of the surfaces.
To prove these results, we construct a finite subgraph whose union of iterated rigid expansions is the curve graph $\mathcal{C}(S)$. The sets constructed, and the method of rigid expansion, are closely related to Aramayona and Leininger’s finite rigid sets. We prove as a consequence that Aramayona and Leininger’s rigid set also exhausts $\mathcal{C}(S)$ via rigid expansions. The combinatorial rigidity results follow as an immediate consequence, based on the author’s previous results.
We study the problem of conjugating a diffeomorphism of the interval to (positive) powers of itself. Although this is always possible for homeomorphisms, the smooth setting is rather interesting. Besides the obvious obstruction given by hyperbolic fixed points, several other aspects need to be considered. As concrete results we show that, in class C1, if we restrict to the (closed) subset of diffeomorphisms having only parabolic fixed points, the set of diffeomorphisms that are conjugate to their powers is dense, but its complement is generic. In higher regularity, however, the complementary set contains an open and dense set. The text is complemented with several remarks and results concerning distortion elements of the group of diffeomorphisms of the interval in several regularities.
Let $\mathrm{Mod}(S_g)$ be the mapping class group of the closed orientable surface of genus $g \geq 1$, and let $\mathrm{LMod}_{p}(X)$ be the liftable mapping class group associated with a finite-sheeted branched cover $p:S \to X$, where X is a hyperbolic surface. For $k \geq 2$, let $p_k: S_{k(g-1)+1} \to S_g$ be the standard k-sheeted regular cyclic cover. In this paper, we show that $\{\mathrm{LMod}_{p_k}(S_g)\}_{k \geq 2}$ forms an infinite family of self-normalising subgroups in $\mathrm{Mod}(S_g)$, which are also maximal when k is prime. Furthermore, we derive explicit finite generating sets for $\mathrm{LMod}_{p_k}(S_g)$ for $g \geq 3$ and $k \geq 2$, and $\mathrm{LMod}_{p_2}(S_2)$. For $g \geq 2$, as an application of our main result, we also derive a generating set for $\mathrm{LMod}_{p_2}(S_g) \cap C_{\mathrm{Mod}(S_g)}(\iota)$, where $C_{\mathrm{Mod}(S_g)}(\iota)$ is the centraliser of the hyperelliptic involution $\iota \in \mathrm{Mod}(S_g)$. Let $\mathcal{L}$ be the infinite ladder surface, and let $q_g : \mathcal{L} \to S_g$ be the standard infinite-sheeted cover induced by $\langle h^{g-1} \rangle$ where h is the standard handle shift on $\mathcal{L}$. As a final application, we derive a finite generating set for $\mathrm{LMod}_{q_g}(S_g)$ for $g \geq 3$.
We prove that a group $\Gamma $ admits a discrete, topological (equivalently, smooth) action on some simply connected 3-manifold if and only if $\Gamma $ has a Cayley complex embeddable—with certain natural restrictions—in one of the following four 3-manifolds: (i) $\mathbb {S}^3$, (ii) $\mathbb {R}^3$, (iii) $\mathbb {S}^2 \times \mathbb R$, and (iv) the complement of a tame Cantor set in $\mathbb {S}^3$. The fact that these are the only simply connected 3-manifolds that allow such actions is a consequence of the Thurston–Perelman geometrization theorem.
We introduce the notion of the equivariant covering type of a space X on which a finite group G acts and study its properties. The equivariant covering type measures the size of G-equivariant good covers of X and is thus an extension of the covering type of a space, introduced by Karoubi and Weibel. We show that the equivariant covering type is a G-homotopy invariant and describe its relation with other G-invariants, like the equivariant LS-category, G-genus, and the multiplicative structures of equivariant cohomology theories. We also compute the G-covering type of regular G-graphs, give estimates for orientation-preserving actions on surfaces and for the projectivizations of complex representations of G and cohomology spheres. As an application, we derive estimates of sizes of minimal G-triangulations for various G-spaces.
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
Let $p \;:\; Y \to X$ be a finite, regular cover of finite graphs with associated deck group $G$, and consider the first homology $H_1(Y;\;{\mathbb{C}})$ of the cover as a $G$-representation. The main contribution of this article is to broaden the correspondence and dictionary between the representation theory of the deck group $G$ on the one hand and topological properties of homology classes in $H_1(Y;\;{\mathbb{C}})$ on the other hand. We do so by studying certain subrepresentations in the $G$-representation $H_1(Y;\;{\mathbb{C}})$.
The homology class of a lift of a primitive element in $\pi _1(X)$ spans an induced subrepresentation in $H_1(Y;\;{\mathbb{C}})$, and we show that this property is never sufficient to characterize such homology classes if $G$ is Abelian. We study $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \leq H_1(Y;\;{\mathbb{C}})$—the subrepresentation spanned by homology classes of lifts of commutators of primitive elements in $\pi _1(X)$. Concretely, we prove that the span of such a homology class is isomorphic to the quotient of two induced representations. Furthermore, we construct examples of finite covers with $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \neq \ker\!(p_*)$.
In this paper, we prove using elementary techniques that any group of diffeomorphisms acting on the 2-sphere and properly extending the conformal group of Möbius transformations must be at least 4-transitive or, more precisely, arc 4-transitive. As an important consequence, we derive that any such group must always contain an element of positive topological entropy. We also provide a self-contained characterization, in terms of transitivity, of the Möbius transformations within the full group of sphere diffeomorphisms.
The equivariant Heegaard genus of a 3-manifold W with the action of a finite group G of diffeomorphisms is the smallest genus of an equivariant Heegaard splitting for W. Although a Heegaard splitting of a reducible manifold is reducible and although if W is reducible, there is an equivariant essential sphere, we show that equivariant Heegaard genus may be super-additive, additive, or sub-additive under equivariant connected sum. Using a thin position theory for 3-dimensional orbifolds, we establish sharp bounds on the equivariant Heegaard genus of reducible manifolds, similar to those known for tunnel number. Along the way, we make use of a new invariant for W which is much better behaved under equivariant sums.
The space of Fredholm operators of fixed index is stratified by submanifolds according to the dimension of the kernel. Geometric considerations often lead to questions about the intersections of concrete families of elliptic operators with these submanifolds: Are the intersections nonempty? Are they smooth? What are their codimensions? The purpose of this article is to develop tools to address these questions in equivariant situations. An important motivation for this work are transversality questions for multiple covers of J-holomorphic maps. As an application, we use our framework to give a concise exposition of Wendl’s proof of the superrigidity conjecture.
For a pseudo-Anosov flow $\varphi $ without perfect fits on a closed $3$-manifold, Agol–Guéritaud produce a veering triangulation $\tau $ on the manifold M obtained by deleting the singular orbits of $\varphi $. We show that $\tau $ can be realized in M so that its 2-skeleton is positively transverse to $\varphi $, and that the combinatorially defined flow graph $\Phi $ embedded in M uniformly codes the orbits of $\varphi $ in a precise sense. Together with these facts, we use a modified version of the veering polynomial, previously introduced by the authors, to compute the growth rates of the closed orbits of $\varphi $ after cutting M along certain transverse surfaces, thereby generalizing the work of McMullen in the fibered setting. These results are new even in the case where the transverse surface represents a class in the boundary of a fibered cone of M. Our work can be used to study the flow $\varphi $ on the original closed manifold. Applications include counting growth rates of closed orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy function on the ‘positive’ cone in $H^1$ of the cut-open manifold, and answering a question of Leininger about the closure of the set of all stretch factors arising as monodromies within a single fibered cone of a $3$-manifold. This last application connects to the study of endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic points.
We establish central limit theorems for an action of a group $G$ on a hyperbolic space $X$ with respect to the counting measure on a Cayley graph of $G$. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.
We consider free symmetries on cobordisms between knots, which is equivalent to cobordisms between knots in lens spaces. We classify which freely periodic knots bound equivariant surfaces in the 4-ball in terms of corresponding homology classes in lens spaces. We give a numerical condition determining the free periods for which torus knots bound equivariant surfaces in the 4-ball.
We completely determine finite abelian regular branched covers of the 2-sphere $S^{2}$ with the property that each homeomorphism of $S^{2}$ preserving the branching set can be lifted.
Let G be the group $\text {PAff}_{+}(\mathbb R/\mathbb Z)$ of piecewise affine circle homeomorphisms or the group ${\operatorname {\mathrm {Diff}}}^{{\kern1pt}\infty }(\mathbb R/\mathbb Z)$ of smooth circle diffeomorphisms. A constructive proof that all irrational rotations are distorted in G is given.
Given an integer $g>2$, we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.