To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define and study graphs associated to hexagon decompositions of surfaces by curves and arcs. One of the variants is shown to be quasi-isometric to the pants graph, whereas the other variant is quasi-isometric to (a Cayley graph of) the mapping class group.
We prove that there exists an algorithm for determining whether two piecewise-linear spatial graphs are isomorphic. In its most general form, our theorem applies to spatial graphs furnished with vertex colourings, edge colourings and/or edge orientations.
We first show that spatial graphs admit canonical decompositions into blocks, that is, spatial graphs that are non-split and have no cut vertices, in a suitable topological sense. Then, we apply a result of Haken and Matveev in order to algorithmically distinguish these blocks.
We define smooth notions of concordance and sliceness for spatial graphs. We prove that sliceness of a spatial graph is equivalent to a condition on a set of linking numbers together with sliceness of a link associated with the graph. This generalizes the result of Taniyama for $\theta $-curves.
We show that any set of distinct homotopy classes of simple closed curves on the torus that pairwise intersect at most k times has size $k+O(\sqrt k \log k)$. Prior to this work, a lemma of Agol, together with the state of the art bounds for the size of prime gaps, implied the error term $O(k^{21/40})$, and in fact the assumption of the Riemann hypothesis improved this error term to the one we obtain $O(\sqrt k\log k)$. By contrast, our methods are elementary, combinatorial, and geometric.
Recently, Gross, Mansour and Tucker introduced the partial-dual polynomial of a ribbon graph as a generating function that enumerates all partial duals of the ribbon graph by Euler genus. It is analogous to the extensively studied polynomial in topological graph theory that enumerates by Euler genus all embeddings of a given graph. To investigate the partial-dual polynomial, one only needs to focus on bouquets: that is, ribbon graphs with exactly one vertex. In this paper, we shall further show that the partial-dual polynomial of a bouquet essentially depends on the signed intersection graph of the bouquet rather than on the bouquet itself. That is to say, two bouquets with the same signed intersection graph have the same partial-dual polynomial. We then give a characterisation of when a bouquet has a planar partial dual in terms of its signed intersection graph. Finally, we consider a conjecture posed by Gross, Mansour and Tucker that there is no orientable ribbon graph whose partial-dual polynomial has only one nonconstant term; this conjecture is false, and we give a characterisation of when all partial duals of a bouquet have the same Euler genus.
A handlebody link is a union of handlebodies of positive genus embedded in 3-space, which generalises the notion of links in classical knot theory. In this paper, we consider handlebody links with a genus two handlebody and $n-1$ solid tori, $n>1$. Our main result is the classification of such handlebody links with six crossings or less, up to ambient isotopy.
The Bollobás–Riordan (BR) polynomial [(2002), Math. Ann.323 81] is a universal polynomial invariant for ribbon graphs. We find an extension of this polynomial for a particular family of combinatorial objects, called rank 3 weakly coloured stranded graphs. Stranded graphs arise in the study of tensor models for quantum gravity in physics, and generalize graphs and ribbon graphs. We present a seven-variable polynomial invariant of these graphs, which obeys a contraction/deletion recursion relation similar to that of the Tutte and BR polynamials. However, it is defined on a much broader class of objects, and furthermore captures properties that are not encoded by the Tutte or BR polynomials.
We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism. We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine (partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to checking dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps found by Wilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and Poulton.
Le nombre chromatique relatif $c_0(S)$ d’une surface compacte S à bord est défini comme la borne supérieure des nombres chromatiques des graphes plongés dans S avec tous leurs sommets sur $\partial S$. Cet invariant topologique a été introduit pour l’étude de la multiplicité de la première valeur propre de Steklov sur S. Dans cet article, on montre que $c_0(S)$ est aussi pertinent pour l’étude des plongements polyédraux tendus de S en établissant deux résultats. Le premier est que s’il existe un plongement polyédral tendu de S dans $\mathbb {R}^n$ qui n’est pas contenu dans un hyperplan, alors $n\leq c_0(S)-1$. Le second est que cette inégalité est optimale pour les surfaces de petit genre.
Archdeacon and Grable (1995) proved that the genus of the random graph $G\in {\mathcal{G}}_{n,p}$ is almost surely close to $pn^{2}/12$ if $p=p(n)\geqslant 3(\ln n)^{2}n^{-1/2}$. In this paper we prove an analogous result for random bipartite graphs in ${\mathcal{G}}_{n_{1},n_{2},p}$. If $n_{1}\geqslant n_{2}\gg 1$, phase transitions occur for every positive integer $i$ when $p=\unicode[STIX]{x1D6E9}((n_{1}n_{2})^{-i/(2i+1)})$. A different behaviour is exhibited when one of the bipartite parts has constant size, i.e., $n_{1}\gg 1$ and $n_{2}$ is a constant. In that case, phase transitions occur when $p=\unicode[STIX]{x1D6E9}(n_{1}^{-1/2})$ and when $p=\unicode[STIX]{x1D6E9}(n_{1}^{-1/3})$.
We analyse the asymptotic extremal growth rate of the Betti numbers of clique complexes of graphs on n vertices not containing a fixed forbidden induced subgraph H.
In particular, we prove a theorem of the alternative: for any H the growth rate achieves exactly one of five possible exponentials, that is, independent of the field of coefficients, the nth root of the maximal total Betti number over n-vertex graphs with no induced copy of H has a limit, as n tends to infinity, and, ranging over all H, exactly five different limits are attained.
For the interesting case where H is the 4-cycle, the above limit is 1, and we prove a superpolynomial upper bound.
It is well known that the minimum crossing number of an alternating link equals the number of crossings in any reduced alternating link diagram of the link. This remarkable result is an application of the Jones polynomial. In the case of the braid index of an alternating link, Yamada showed that the minimum number of Seifert circles over all regular projections of a link equals the braid index. Thus one may conjecture that the number of Seifert circles in a reduced alternating diagram of the link equals the braid index of the link, but this turns out to be false. In this paper we prove the next best thing that one could hope for: we characterise exactly those alternating links for which their braid indices equal the numbers of Seifert circles in their corresponding reduced alternating link diagrams. More specifically, we prove that if D is a reduced alternating link diagram of an alternating link L, then b(L), the braid index of L, equals the number of Seifert circles in D if and only if GS(D) contains no edges of weight one. Here GS(D), called the Seifert graph of D, is an edge weighted simple graph obtained from D by identifying each Seifert circle of D as a vertex of GS(D) such that two vertices in GS(D) are connected by an edge if and only if the two corresponding Seifert circles share crossings between them in D and that the weight of the edge is the number of crossings between the two Seifert circles. This result is partly based on the well-known MFW inequality, which states that the a-span of the HOMFLY polynomial of L is a lower bound of 2b(L)−2, as well as the result of Yamada relating the minimum number of Seifert circles over all link diagrams of L to b(L).
We follow the example of Tutte in his construction of the dichromate of a graph (i.e. the Tutte polynomial) as a unification of the chromatic polynomial and the flow polynomial in order to construct a new polynomial invariant of maps (graphs embedded in orientable surfaces). We call this the surface Tutte polynomial. The surface Tutte polynomial of a map contains the Las Vergnas polynomial, the Bollobás–Riordan polynomial and the Krushkal polynomial as specializations. By construction, the surface Tutte polynomial includes among its evaluations the number of local tensions and local flows taking values in any given finite group. Other evaluations include the number of quasi-forests.
We study a natural discrete Bochner-type inequality on graphs, and explore its merit as a notion of “curvature” in discrete spaces. An appealing feature of this discrete version of the so-called ${{\Gamma }_{2}}$-calculus (of Bakry-Émery) seems to be that it is fairly straightforward to compute this notion of curvature parameter for several specific graphs of interest, particularly, abelian groups, slices of the hypercube, and the symmetric group under various sets of generators. We further develop this notion by deriving Buser-type inequalities (à la Ledoux), relating functional and isoperimetric constants associated with a graph. Our derivations provide a tight bound on the Cheeger constant (i.e., the edge-isoperimetric constant) in terms of the spectral gap, for graphs with nonnegative curvature, particularly, the class of abelian Cayley graphs, a result of independent interest.
This paper concerns the problem of existence of taut foliations among 3-manifolds. From the work of David Gabai we know that a closed 3-manifold with non-trivial second homology group admits a taut foliation. The essential part of this paper focuses on Seifert fibered homology 3-spheres. The result is quite different if they are integral or rational but non-integral homology 3-spheres. Concerning integral homology 3-spheres, we can see that all but the 3-sphere and the Poincaré 3-sphere admit a taut foliation. Concerning non-integral homology 3-spheres, we prove there are infinitely many that admit a taut foliation, and infinitely many without a taut foliation. Moreover, we show that the geometries do not determine the existence of taut foliations on non-integral Seifert fibered homology 3-spheres.
We introduce a flow of a spatial graph and see how invariants for spatial graphs and handlebody-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle cocycle invariants for spatial graphs and handlebody-links.
Clark et al. [‘The axiomatizability of topological prevarieties’, Adv. Math.218 (2008), 1604–1653] have shown that, for k≥2, there exists a Boolean topological graph that is k-colourable but not topologically k-colourable; that is, for every ϵ>0, it cannot be coloured by a paintbrush of width ϵ. We generalize this result to show that, for k≥2, there is a Boolean topological graph that is 2-colourable but not topologically k-colourable. This graph is an inverse limit of finite graphs which are shown to exist by an Erdős-style probabilistic argument of Hell and Nešetřil [‘The core of a graph’, Discrete Math.109 (1992), 117–126]. We use the fact that there exists a Boolean topological graph that is 2-colourable but not k-colourable, and some other results (some new and some previously known), to answer the question of which finitely generated topological residual classes of graphs are axiomatizable by universal Horn sentences. A more general version of this question was raised in the above-mentioned paper by Clark et al., and has been investigated by various authors for other structures.
We count how many ‘different’ Morse functions exist on the 2-sphere. There are several ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concentrate only on two natural equivalence relations: homological (when the regular sublevel sets f and g have identical Betti numbers) and geometric (when f is obtained from g via global, orientation-preserving changes of coordinates on S2 and ℝ). The count of homological classes is reduced to a count of lattice paths confined to the first quadrant. The count of geometric classes is reduced to a count of certain labeled trees, which is encoded by certain elliptic integrals.
Using the Polyak–Viro Gauss diagram formula for the degree-4 Vassiliev invariant, we extend some previous results on positive knots and the non-triviality of the Jones polynomial of untwisted Whitehead doubles.