To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an automorphism ϕ of a group G, the map $(g,h) \mapsto gh\phi(g)^{-1}$, defines a left action of G on itself, whose orbits are called the ϕ-twisted conjugacy classes. In this paper, we consider two interesting aspects of this action for mapping class groups, namely, the existence of a dense orbit and the count of orbits. Generalising the idea of the Rokhlin property, a topological group is said to exhibit the twisted Rokhlin property if, for each automorphism ϕ of the group, there exists a ϕ-twisted conjugacy class that is dense in the group. We provide a complete classification of connected orientable infinite-type surfaces without boundaries whose mapping class groups possess the twisted Rokhlin property. Additionally, we prove that the mapping class groups of the remaining surfaces do not admit any dense ϕ-twisted conjugacy class for any automorphism ϕ. This supplements the recent work of Lanier and Vlamis on the Rokhlin property of big mapping class groups. Regarding the count of twisted conjugacy classes, we prove that the number of ϕ-twisted conjugacy classes is infinite for each automorphism ϕ of the mapping class group of a connected orientable infinite-type surface without boundary.
We introduce the notion of echeloned spaces – an order-theoretic abstraction of metric spaces. The first step is to characterize metrizable echeloned spaces. It turns out that morphisms between metrizable echeloned spaces are uniformly continuous or have a uniformly discrete image. In particular, every automorphism of a metrizable echeloned space is uniformly continuous, and for every metric space with midpoints, the automorphisms of the induced echeloned space are precisely the dilations.
Next, we focus on finite echeloned spaces. They form a Fraïssé class, and we describe its Fraïssé-limit both as the echeloned space induced by a certain homogeneous metric space and as the result of a random construction. Building on this, we show that the class of finite ordered echeloned spaces is Ramsey. The proof of this result combines a combinatorial argument by Nešetřil and Hubička with a topological-dynamical point of view due to Kechris, Pestov and Todorčević. Finally, using the method of Katětov functors due to Kubiś and Mašulović, we prove that the full symmetric group on a countable set topologically embeds into the automorphism group of the countable universal homogeneous echeloned space.
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
We extend the Kechris–Pestov–Todorčević correspondence to weak Fraïssé categories and automorphism groups of generic objects. The new ingredient is the weak Ramsey property. We demonstrate the theory on several examples including monoid categories, the category of almost linear orders and categories of strong embeddings of trees.
For a space X let $\mathcal {K}(X)$ be the set of compact subsets of X ordered by inclusion. A map $\phi :\mathcal {K}(X) \to \mathcal {K}(Y)$ is a relative Tukey quotient if it carries compact covers to compact covers. When there is such a Tukey quotient write $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$, and write $(X,\mathcal {K}(X)) =_T (Y,\mathcal {K}(Y))$ if $(X,\mathcal {K}(X)) \ge _T (Y,\mathcal {K}(Y))$ and vice versa.
We investigate the initial structure of pairs $(X,\mathcal {K}(X))$ under the relative Tukey order, focussing on the case of separable metrizable spaces. Connections are made to Menger spaces.
Applications are given demonstrating the diversity of free topological groups, and related free objects, over separable metrizable spaces. It is shown a topological group G has the countable chain condition if it is either $\sigma $-pseudocompact or for some separable metrizable M, we have $\mathcal {K}(M) \ge _T (G,\mathcal {K}(G))$.
We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully characterize the behavior of their finite products.
We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open questions.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
Let $\mathcal {G}$ be a second countable, Hausdorff topological group. If $\mathcal {G}$ is locally compact, totally disconnected and T is an expansive automorphism then it is shown that the dynamical system $(\mathcal {G}, T)$ is topologically conjugate to the product of a symbolic full-shift on a finite number of symbols, a totally wandering, countable-state Markov shift and a permutation of a countable coset space of $\mathcal {G}$ that fixes the defining subgroup. In particular if the automorphism is transitive then $\mathcal {G}$ is compact and $(\mathcal {G}, T)$ is topologically conjugate to a full-shift on a finite number of symbols.
We give strengthened versions of the Herwig–Lascar and Hodkinson–Otto extension theorems for partial automorphisms of finite structures. Such strengthenings yield several combinatorial and group-theoretic consequences for homogeneous structures. For instance, we establish a coherent form of the extension property for partial automorphisms for certain Fraïssé classes. We deduce from these results that the isometry group of the rational Urysohn space, the automorphism group of the Fraïssé limit of any Fraïssé class that is the class of all ${\cal F}$-free structures (in the Herwig–Lascar sense), and the automorphism group of any free homogeneous structure over a finite relational language all contain a dense locally finite subgroup. We also show that any free homogeneous structure admits ample generics.
We investigate continuous transitive actions of semitopological groups on spaces, as well as separately continuous transitive actions of topological groups.
We consider generalised metrisability and cardinal invariants in quasitopological groups. We construct examples to show that some equalities of cardinal invariants in topological groups cannot be extended to quasitopological groups.
We extend Følner’s amenability criterion to the realm of general topological groups. Building on this, we show that a topological group $G$ is amenable if and only if its left-translation action can be approximated in a uniform manner by amenable actions on the set $G$. As applications we obtain a topological version of Whyte’s geometric solution to the von Neumann problem and give an affirmative answer to a question posed by Rosendal.
We present a general framework for automatic continuity results for groups of isometries of metric spaces. In particular, we prove automatic continuity property for the groups of isometries of the Urysohn space and the Urysohn sphere, i.e. that any homomorphism from either of these groups into a separable group is continuous. This answers a question of Ben Yaacov, Berenstein and Melleray. As a consequence, we get that the group of isometries of the Urysohn space has unique Polish group topology and the group of isometries of the Urysohn sphere has unique separable group topology. Moreover, as an application of our framework we obtain new proofs of the automatic continuity property for the group $\text{Aut}([0,1],\unicode[STIX]{x1D706})$, due to Ben Yaacov, Berenstein and Melleray and for the unitary group of the infinite-dimensional separable Hilbert space, due to Tsankov.
Let G be a countably infinite discrete group, letβG be the Stone–Čechcompactification of G, and let ${G^{\rm{*}}} = \beta G \setminus G$. An idempotent $p \in {G^{\rm{*}}}$ is left (right) maximal if for every idempotent $q \in {G^{\rm{*}}}$, pq = p(qp = P) implies qp= q (qp =q). An idempotent $p \in {G^{\rm{*}}}$ is strongly right maximal if the equation xp= p has the unique solution x= p in G*. We show thatthere is an idempotent $p \in {G^{\rm{*}}}$ which is both left maximal and strongly right maximal.
A class of abelian topological groups was previously defined to be a variety of topological groups with coproducts if it is closed under forming subgroups, quotients, products and coproducts in the category of all abelian topological groups and continuous homomorphisms. This extended research on varieties of topological groups initiated by the second author. The key to describing varieties of topological groups generated by various classes was proving that all topological groups in the variety are a quotient of a subgroup of a product of groups in the generating class. This paper analyses generating varieties of topological groups with coproducts. It focuses on the interplay between forming products and coproducts. It is proved that the variety of topological groups with coproducts generated by all discrete groups contains topological groups which cannot be expressed as a quotient of a subgroup of a product of a coproduct of discrete groups. It is proved that the variety of topological groups with coproducts generated by any infinite-dimensional Hilbert space contains all infinite-dimensional Hilbert spaces, answering an open question. This contrasts with the result that a variety of topological groups generated by a topological group does not contain any infinite-dimensional Hilbert space of greater cardinality.
We define a simple criterion for a homogeneous, complete metric structure X that implies that the automorphism group Aut(X) satisfies all the main consequences of the existence of ample generics: it has the automatic continuity property, the small index property, and uncountable cofinality for nonopen subgroups. Then we verify it for the Urysohn space $$, the Lebesgue probability measure algebra MALG, and the Hilbert space $\ell _2 $, thus proving that Iso($$), Aut(MALG), $U\left( {\ell _2 } \right)$, and $O\left( {\ell _2 } \right)$ share these properties. We also formulate a condition for X which implies that every homomorphism of Aut(X) into a separable group K with a left-invariant, complete metric, is trivial, and we verify it for $$, and $\ell _2 $.
Given a class ${\cal C}$ of subgroups of a topological group G, we saythat a subgroup $H \in {\cal C}$ is a universal${\cal C}$subgroup of G if every subgroup $K \in {\cal C}$ is a continuous homomorphic preimage of H.Such subgroups may be regarded as complete members of ${\cal C}$ with respect to a natural preorder on the set of subgroups ofG. We show that for any locally compact Polish groupG, the countable power Gω has a universal Kσ subgroup and a universal compactly generated subgroup. We prove a weakerversion of this in the nonlocally compact case and provide an example showingthat this result cannot readily be improved. Additionally, we show that manystandard Banach spaces (viewed as additive topological groups) have universalKσ and compactly generated subgroups. As an aside, we explore therelationship between the classes of Kσ and compactly generated subgroups and give conditions under which the twocoincide.
We answer some questions from [4] by giving suitable examples of small Polish structures. First, we present a class of small Polish group structures without generic elements. Next, we construct a first example of a small non-zero-dimensional Polish G-group.