To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a local-to-global formalism for constructing Calabi–Yau structures for global sections of constructible sheaves or cosheaves of differential graded categories. The required data (a morphism between the sheafified Hochschild homology with the topological dualizing sheaf, satisfying a nondegeneracy condition) specializes to the classical notion of orientation when applied to the category of local systems on a manifold. We apply this construction to the cosheaves on arboreal skeleta arising in the microlocal approach to the A-model.
We compute the open Gromov-Witten disk invariants and the relative quantum cohomology of the Chiang Lagrangian $L_\triangle \subset \mathbb {C}P^3$. Since $L_\triangle $ is not fixed by any anti-symplectic involution, the invariants may augment straightforward J-holomorphic disk counts with correction terms arising from the formalism of Fukaya $A_\infty $-algebras and bounding cochains. These correction terms are shown in fact to be nontrivial for many invariants. Moreover, examples of nonvanishing mixed disk and sphere invariants are obtained.
We characterize a class of open Gromov-Witten invariants, called basic, which coincide with straightforward counts of J-holomorphic disks. Basic invariants for the Chiang Lagrangian are computed using the theory of axial disks developed by Evans-Lekili and Smith in the context of Floer cohomology. The open WDVV equations give recursive relations which determine all invariants from the basic ones. The denominators of all invariants are observed to be powers of $2$ indicating a nontrivial arithmetic structure of the open WDVV equations. The magnitude of invariants is not monotonically increasing with degree. Periodic behavior is observed with periods $8$ and $16.$
We investigate when a Legendrian knot in the standard contact ${{\mathbb{R}}}^3$ has a non-orientable exact Lagrangian filling. We prove analogs of several results in the orientable setting, develop new combinatorial obstructions to fillability, and determine when several families of knots have such fillings. In particular, we completely determine when an alternating knot (and more generally a plus-adequate knot) is decomposably non-orientably fillable and classify the fillability of most torus and 3-strand pretzel knots. We also describe rigidity phenomena of decomposable non-orientable fillings, including finiteness of the possible normal Euler numbers of fillings and the minimisation of crosscap numbers of fillings, obtaining results which contrast in interesting ways with the smooth setting.
The Hamiltonian shape invariant of a domain $X \subset \mathbb {R}^4$, as a subset of $\mathbb {R}^2$, describes the product Lagrangian tori which may be embedded in $X$. We provide necessary and sufficient conditions to determine whether or not a path in the shape invariant can lift, that is, be realized as a smooth family of embedded Lagrangian tori, when $X$ is a basic $4$-dimensional toric domain such as a ball $B^4(R)$, an ellipsoid $E(a,b)$ with ${b}/{a} \in \mathbb {N}_{\geq ~2}$, or a polydisk $P(c,d)$. As applications, via the path lifting, we can detect knotted embeddings of product Lagrangian tori in many toric $X$. We also obtain novel obstructions to symplectic embeddings between domains that are more general than toric concave or toric convex.
Our main result is the $\mathbb {\mathcal {C}}^{0}$-rigidity of the area spectrum and the Maslov class of Lagrangian submanifolds. This relies on the existence of punctured pseudoholomorphic disks in cotangent bundles with boundary on the zero section, whose boundaries represent any integral homology class. We discuss further applications of these punctured disks in symplectic geometry.
We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic curves contributing to the Gromov-Witten (GW) invariants. In view of Joyce’s conjecture, these Lagrangians are expected to have special Lagrangian representatives and hence solve a special Lagrangian enumerative problem in Calabi-Yau threefolds.
We apply this construction to the tropical curves obtained from the 2,875 lines on the quintic Calabi-Yau threefold. Each admissible tropical curve gives a Lagrangian rational homology sphere in the corresponding mirror quintic threefold and the Joyce’s weight of each of these Lagrangians equals the multiplicity of the corresponding tropical curve.
As applications, we show that disjoint curves give pairwise homologous but non-Hamiltonian isotopic Lagrangians and we check in an example that $>300$ mutually disjoint curves (and hence Lagrangians) arise. Dehn twists along these Lagrangians generate an abelian subgroup of the symplectic mapping class group with that rank.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
In this note, we study homology classes in the mirror quintic Calabi–Yau threefold that can be realized by special Lagrangian submanifolds. We have used Picard–Lefschetz theory to establish the monodromy action and to study the orbit of Lagrangian vanishing cycles. For many prime numbers $p,$ we can compute the orbit modulo p. We conjecture that the orbit in homology with coefficients in $\mathbb {Z}$ can be determined by these orbits with coefficients in $\mathbb {Z}_p$.
We show that a monotone Lagrangian L in ${\mathbb{C}}{\mathbb{P}}^n$ of minimal Maslov number n + 1 is homeomorphic to a double quotient of a sphere, and thus homotopy equivalent to ${\mathbb{R}}{\mathbb{P}}^n$. To prove this we use Zapolsky’s canonical pearl complex for L over ${\mathbb{Z}}$, and twisted versions thereof, where the twisting is determined by connected covers of L. The main tool is the action of the quantum cohomology of ${\mathbb{C}}{\mathbb{P}}^n$ on the resulting Floer homologies.
Let $(M,I,J,K,g)$ be a hyperkähler manifold. Then the complex manifold $(M,I)$ is holomorphic symplectic. We prove that for all real $x,y$, with $x^{2}+y^{2}=1$ except countably many, any finite-energy $(xJ+yK)$-holomorphic curve with boundary in a collection of $I$-holomorphic Lagrangians must be constant. By an argument based on the Łojasiewicz inequality, this result holds no matter how the Lagrangians intersect each other. It follows that one can choose perturbations such that the holomorphic polygons of the associated Fukaya category lie in an arbitrarily small neighborhood of the Lagrangians. That is, the Fukaya category is local. We show that holomorphic Lagrangians are tautologically unobstructed. Moreover, the Fukaya $A_{\infty }$ algebra of a holomorphic Lagrangian is formal. Our result also explains why the special Lagrangian condition holds without instanton corrections for holomorphic Lagrangians.
We consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.
We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
This paper introduces a new Lagrangian surgery construction that generalizes Lalonde–Sikorav and Polterovich’s well-known construction, and combines this with Biran and Cornea’s Lagrangian cobordism formalism. With these techniques, we build a framework which both recovers several known long exact sequences (Seidel’s exact sequence, including the fixed point version and Wehrheim and Woodward’s family version) in symplectic geometry in a uniform way, and yields a partial answer to a long-term open conjecture due to Huybrechts and Thomas; this also involved a new observation which relates projective twists with surgeries.
We showbymeans of an example in ${{\mathbb{C}}^{3}}$ that Gromov’s theoremon the presence of attached holomorphic discs for compact Lagrangianmanifolds is not true in the subcritical real-analytic case, even in the absence of an obvious obstruction, i.e., polynomial convexity.
We find a non-displaceable Lagrangian torus fiber in a semi-toric system which is superheavy with respect to a certain symplectic quasi-state. The proof employs both 4-dimensional techniques and those from symplectic field theory. In particular, our result implies Lagrangian $\mathbb{R}P^{2}$ is not a stem in $\mathbb{C}P^{2}$, answering a question of Entov and Polterovich.
The following Chen's bi-harmonic conjecture made in 1991 is well-known and stays open: The only bi-harmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we prove that the bi-harmonic conjecture is true for bi-harmonic hypersurfaces with three distinct principal curvatures of a Euclidean space of arbitrary dimension.
The width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian $Q$ by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian $L$ with respect to a Hamiltonian whose chords correspond to geodesic paths in $Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian $Q$ admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of $Q$ is bounded above by four times its displacement energy.
After reviewing geometric quantisation of linear bosonic and fermionic systems, we study the holonomy of the projectively flat connection on the bundle of Hilbert spaces over the space of compatible complex structures and relate it to the Maslov index and its various generalisations. We also consider bosonic and fermionic harmonic oscillators parametrised by compatible complex structures and compare Berry’s phase with the above holonomy.
We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.