To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Special Ricci–Hessian equations on Kähler manifolds $(M,g)$, as defined by Maschler [‘Special Kähler–Ricci potentials and Ricci solitons’, Ann. Global Anal. Geom.34 (2008), 367–380], involve functions $\tau $ on M and state that, for some function $\alpha $ of the real variable $\tau\kern-0.8pt $, the sum of $\alpha \nabla d\tau\kern-0.8pt $ and the Ricci tensor equals a functional multiple of the metric g, while $\alpha \nabla d\tau\kern-0.8pt $ itself is assumed to be nonzero almost everywhere. Three well-known obvious ‘standard’ cases are provided by (non-Einstein) gradient Kähler–Ricci solitons, conformally-Einstein Kähler metrics, and special Kähler–Ricci potentials. We show that, outside of these three cases, such an equation can only occur in complex dimension two and, at generic points, it must then represent one of three types, for which, up to normalizations, $\alpha =2\cot \tau\kern-0.8pt $, $\alpha =2\coth \tau\kern-0.8pt $, or $\alpha =2\tanh \tau\kern-0.8pt $. We also use the Cartan–Kähler theorem to prove that these three types are actually realized in a ‘nonstandard’ way.
We provide two constructions of Gaussian random holomorphic sections of a Hermitian holomorphic line bundle $(L,h_{L})$ on a Hermitian complex manifold $(X,\Theta )$, that are particularly interesting in the case where the space of $\mathcal {L}^2$-holomorphic sections $H^{0}_{(2)}(X,L)$ is infinite dimensional. We first provide a general construction of Gaussian random holomorphic sections of L, which, if $H^{0}_{(2)}(X,L)$ is infinite dimensional, are almost never $\mathcal {L}^2$-integrable on X. The second construction combines the abstract Wiener space theory with the Berezin–Toeplitz quantization and yields a Gaussian ensemble of random $\mathcal {L}^2$-holomorphic sections. Furthermore, we study their random zeros in the context of semiclassical limits, including their distributions, large deviation estimates, local fluctuations and hole probabilities.
We prove that the only Bott manifolds such that the Futaki invariant vanishes for any Kähler class are isomorphic to the products of the projective lines.
In the present article, we study compact complex manifolds admitting a Hermitian metric which is strong Kähler with torsion (SKT) and Calabi–Yau with torsion (CYT) and whose Bismut torsion is parallel. We first obtain a characterization of the universal cover of such manifolds as a product of a Kähler Ricci-flat manifold with a Bismut flat one. Then, using a mapping torus construction, we provide non-Bismut flat examples. The existence of generalized Kähler structures is also investigated.
Let G be a simply connected semisimple compact Lie group, let X be a simply connected compact Kähler manifold homogeneous under G, and let L be a negative holomorphic line bundle over X. We prove that all G-invariant Kähler metrics on the total space of L arise from the Calabi ansatz. Using this, we show that there exists a unique G-invariant scalar-flat Kähler metric in each G-invariant Kähler class of L. The G-invariant scalar-flat Kähler metrics are automatically asymptotically conical.
We study deformed Hermitian Yang–Mills (dHYM) connections on ruled surfaces explicitly, using the momentum construction. As a main application, we provide many new examples of dHYM connections coupled to a variable background Kähler metric. These are solutions of the moment map partial differential equations given by the Hamiltonian action of the extended gauge group, coupling the dHYM equation to the scalar curvature of the background. The large radius limit of these coupled equations is the Kähler–Yang–Mills system of Álvarez-Cónsul, Garcia-Fernandez, and García-Prada, and in this limit, our solutions converge smoothly to those constructed by Keller and Tønnesen-Friedman. We also discuss other aspects of our examples including conical singularities, realization as B-branes, the small radius limit, and canonical representatives of complexified Kähler classes.
We investigate the pluriclosed flow on Oeljeklaus–Toma manifolds. We parameterize left-invariant pluriclosed metrics on Oeljeklaus–Toma manifolds, and we classify the ones which lift to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution $\omega _t$ which once normalized collapses to a torus in the Gromov–Hausdorff sense. Moreover, the lift of $\tfrac {1}{1+t}\omega _t$ to the universal covering of the manifold converges in the Cheeger–Gromov sense to $(\mathbb H^s\times \mathbb C^s, \tilde {\omega }_{\infty })$, where $\tilde {\omega }_{\infty }$ is an algebraic soliton.
In 1977, Gauduchon proved that on every compact hermitian manifold $(X, \omega )$ there exists a conformally equivalent hermitian metric $\omega _\mathrm {G}$ which satisfies $\mathrm {dd}^{\mathrm {c}} \omega _\mathrm {G}^{n-1} = 0$. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
As is well known, the holomorphic sectional curvature is just half of the sectional curvature in a holomorphic plane section on a Kähler manifold (Zheng, Complex differential geometry (2000)). In this article, we prove that if the holomorphic sectional curvature is half of the sectional curvature in a holomorphic plane section on a Hermitian manifold then the Hermitian metric is Kähler.
We investigate the geometry of Hermitian manifolds endowed with a compact Lie group action by holomorphic isometries with principal orbits of codimension one. In particular, we focus on a special class of these manifolds constructed by following Bérard-Bergery which includes, among the others, the holomorphic line bundles on $\mathbb {C}\mathbb {P}^{m-1}$, the linear Hopf manifolds and the Hirzebruch surfaces. We characterize their invariant special Hermitian metrics, such as balanced, Kähler-like, pluriclosed, locally conformally Kähler, Vaisman and Gauduchon. Furthermore, we construct new examples of cohomogeneity one Hermitian metrics solving the second-Chern–Einstein equation and the constant Chern-scalar curvature equation.
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
By use of a natural map introduced recently by the first and third authors from the space of pure-type complex differential forms on a complex manifold to the corresponding one on the small differentiable deformation of this manifold, we will give a power series proof for Kodaira–Spencer’s local stability theorem of Kähler structures. We also obtain two new local stability theorems, one of balanced structures on an n-dimensional balanced manifold with the $(n-1,n)$th mild $\partial \overline {\partial }$-lemma by power series method and the other one on p-Kähler structures with the deformation invariance of $(p,p)$-Bott–Chern numbers.
Consider a holomorphic submersion between compact Kähler manifolds, such that each fibre admits a constantscalar curvature Kähler metric. When the fibres admit continuous automorphisms, a choice of fibrewise constant scalarcurvature Kähler metric is not unique. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kähler metric satisfying a geometric partial differential equation. The condition generalises the Hermite-Einstein condition for a holomorphic vector bundle through the induced fibrewise Fubini-Study metric on the associated projectivisation.
We prove various foundational analytic results concerning optimal symplectic connections. Our main result proves that optimal symplectic connections are unique, up to the action of the automorphism group of the submersion, when they exist. Thus optimal symplectic connections are canonical relatively Kähler metrics when they exist. In addition, we show that the existence of an optimal symplectic connection forces the automorphism group of the submersion to be reductive and that an optimal symplectic connection is automatically invariant under a maximal compact subgroup of this automorphism group. We also prove that when a submersion admits an optimal symplectic connection, it achieves the absolute minimum of a natural log norm functional, which we define.
In this paper, by applying for a new approach of the so-called Tsinghua principle, we prove the nonexistence of locally conformally flat real hypersurfaces in both the m-dimensional complex quadric $Q^m$ and the complex hyperbolic quadric $Q^{m\ast }$ for $m\ge 3$.
First we introduce the notion of parallel Ricci tensor ${\nabla }\mathrm {Ric}=0$ for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 and show that the unit normal vector field N is singular. Next we give a new classification of real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 with parallel Ricci tensor.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.
Let $M$ and $N$ be two compact complex manifolds. We show that if the tautological line bundle ${\mathcal{O}}_{T_{M}^{\ast }}(1)$ is not pseudo-effective and ${\mathcal{O}}_{T_{N}^{\ast }}(1)$ is nef, then there is no non-constant holomorphic map from $M$ to $N$. In particular, we prove that any holomorphic map from a compact complex manifold $M$ with RC-positive tangent bundle to a compact complex manifold $N$ with nef cotangent bundle must be a constant map. As an application, we obtain that there is no non-constant holomorphic map from a compact Hermitian manifold with positive holomorphic sectional curvature to a Hermitian manifold with non-positive holomorphic bisectional curvature.
We introduce the notion of Lie invariant structure Jacobi operators for real hypersurfaces in the complex quadric $Q^{m}=SO_{m+2}/SO_{m}SO_{2}$. The existence of invariant structure Jacobi operators implies that the unit normal vector field $N$ becomes $\mathfrak{A}$-principal or $\mathfrak{A}$-isotropic. Then, according to each case, we give a complete classification of real hypersurfaces in $Q^{m}=SO_{m+2}/SO_{m}SO_{2}$ with Lie invariant structure Jacobi operators.