To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a one-to-one correspondence between Kähler metrics in a given conformal class and parallel sections of a certain vector bundle with conformally invariant connection, where the parallel sections satisfy a set of non-linear algebraic constraints that we describe. The vector bundle captures 2-form prolongations and is isomorphic to $\Lambda^3(\mathcal{T})$, where ${\mathcal{T}}$ is the tractor bundle of conformal geometry, but the resulting connection differs from the normal tractor connection by curvature terms.
Our analysis leads to a set of obstructions for a Riemannian metric to be conformal to a Kähler metric. In particular, we find an explicit algebraic condition for a Weyl tensor which must hold if there exists a conformal Killing–Yano tensor, which is a necessary condition for a metric to be conformal to Kähler. This gives an invariant characterization of algebraically special Riemannian metrics of type D in dimensions higher than four.
As is well known, the holomorphic sectional curvature is just half of the sectional curvature in a holomorphic plane section on a Kähler manifold (Zheng, Complex differential geometry (2000)). In this article, we prove that if the holomorphic sectional curvature is half of the sectional curvature in a holomorphic plane section on a Hermitian manifold then the Hermitian metric is Kähler.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
A Vaisman manifold is a special kind of locally conformally Kähler manifold, which is closely related to a Sasaki manifold. In this paper, we show a basic structure theorem of simply connected homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to holomorphic isometry. For the case of unimodular Lie groups, we obtain a complete classification of simply connected Sasaki and Vaisman unimodular Lie groups, up to modification.
In the paper we describe Kahler QCH surfaces. We prove that any Calabi type and orthotoric Kahler surfaces are QCH Kahler surfaces. We also classify locally homogeneous QCH surfaces.
We show that PQε-projectivity of two Riemannian metrics introduced in [15] (P. J. Topalov, Geodesic compatibility and integrability of geodesic flows, J. Math. Phys.44(2) (2003), 913–929.) implies affine equivalence of the metrics unless ε ∈ {0,−1,−3,−5,−7,. . .}. Moreover, we show that for ε=0, PQε-projectivity implies projective equivalence.
We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact minimal submanifold M in a complex projective space CPm. As an application of this formula, we prove that M is a geodesic minimal hypersphere in CPm if the sectional curvature satisfies K≥1/n, if the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied when M is a CR submanifold. We also prove that M is the complex projective space CPn/2 if K≥3/n, and if the normal connection of M is semi-flat.
The requirement that a (non-Einstein) Kähler metric in any given complex dimension $m > 2$ be almost-everywhere conformally Einstein turns out to be much more restrictive, even locally, than in the case of complex surfaces. The local biholomorphic-isometry types of such metrics depend, for each $m > 2$, on three real parameters along with an arbitrary Kähler–Einstein metric $h$ in complex dimension $m - 1$. We provide an explicit description of all these local-isometry types, for any given $h$. This result is derived from a more general local classification theorem for metrics admitting functions that we call special Kähler–Ricci potentials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.