To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a new family $(\mathcal {T}_n)_{n\geq 1}$ of aperiodic sets of Wang tiles and we describe the dynamical properties of the set $\Omega _n$ of valid configurations $\mathbb {Z}^2\to \mathcal {T}_n$. The tiles can be defined as the different instances of a square-shaped computer chip whose inputs and outputs are 3-dimensional integer vectors. The family include the Ammann aperiodic set of 16 Wang tiles and gathers the hallmarks of other small aperiodic sets of Wang tiles. Notably, the tiles satisfy additive versions of equations verified by the Kari–Culik aperiodic sets of 14 and 13 Wang tiles. Also configurations in $\Omega _n$ are the codings of a $\mathbb {Z}^2$-action on a 2-dimensional torus like the Jeandel–Rao aperiodic set of 11 Wang tiles. The family broadens the relation between quadratic integers and aperiodic tilings beyond the omnipresent golden ratio as the dynamics of $\Omega _n$ involves the positive root $\beta $ of the polynomial $x^2-nx-1$, also known as the n-th metallic mean. We show the existence of an almost one-to-one factor map $\Omega _n\to \mathbb {T}^2$ which commutes the shift action on $\Omega _n$ with horizontal and vertical translations by $\beta $ on $\mathbb {T}^2$. The factor map can be explicitly defined by the average of the top labels from the same row of tiles as in Kari and Culik examples. The proofs are based on the minimality of $\Omega _n$ (proved in a previous article) and a polygonal partition of $\mathbb {T}^2$ which we show is a Markov partition for the toral $\mathbb {Z}^2$-action. The partition and the sets of Wang tiles are symmetric which makes them, like Penrose tilings, worthy of investigation.
For every positive integer n, we introduce a set ${\mathcal {T}}_n$ made of $(n+3)^2$ Wang tiles (unit squares with labeled edges). We represent a tiling by translates of these tiles as a configuration $\mathbb {Z}^2\to {\mathcal {T}}_n$. A configuration is valid if the common edge of adjacent tiles has the same label. For every $n\geq 1$, we show that the Wang shift ${\Omega }_n$, defined as the set of valid configurations over the tiles ${\mathcal {T}}_n$, is self-similar, aperiodic and minimal for the shift action. We say that $\{{\Omega }_n\}_{n\geq 1}$ is a family of metallic mean Wang shifts, since the inflation factor of the self-similarity of $\Omega _n$ is the positive root of the polynomial $x^2-nx-1$. This root is sometimes called the n-th metallic mean, and in particular, the golden mean when $n=1$, and the silver mean when $n=2$. When $n=1$, the set of Wang tiles ${\mathcal {T}}_1$ is equivalent to the Ammann aperiodic set of 16 Wang tiles.
Orbit separation dimension ($\mathrm {OSD}$), previously introduced as amorphic complexity, is a powerful complexity measure for topological dynamical systems with pure-point spectrum. Here, we develop methods and tools for it that allow a systematic application to translation dynamical systems of tiling spaces that are generated by primitive inflation rules. These systems share many nice properties that permit the explicit computation of the $\mathrm {OSD}$, thus providing a rich class of examples with non-trivial $\mathrm {OSD}$.
The rank of a tiling’s return module depends on the geometry of its tiles and is not a topological invariant. However, the rank of the first Čech cohomology $\check H^1(\Omega )$ gives upper and lower bounds for the rank of the return module. For all sufficiently large patches, the rank of the return module is at most the rank of $\check H^1(\Omega )$. For a generic choice of tile shapes and an arbitrary reference patch, the rank of the return module is at least the rank of $\check H^1(\Omega )$. Therefore, for generic tile shapes and all sufficiently large patches, the rank of the return module is equal to the rank of $\check H^1(\Omega )$.
Two asymptotic configurations on a full $\mathbb {Z}^d$-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$. Many open questions are raised by the current work and are listed in the introduction.
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$. Further, we generalize the concept of acceptance domains to locally compact second countable groups.
The construction of a spectral cocycle from the case of one-dimensional substitution flows [A. I. Bufetov and B. Solomyak. A spectral cocycle for substitution systems and translation flows. J. Anal. Math.141(1) (2020), 165–205] is extended to the setting of pseudo-self-similar tilings in ${\mathbb R}^d$, allowing expanding similarities with rotations. The pointwise upper Lyapunov exponent of this cocycle is used to bound the local dimension of spectral measures of deformed tilings. The deformations are considered, following the work of Treviño [Quantitative weak mixing for random substitution tilings. Israel J. Math., to appear], in the simpler, non-random setting. We review some of the results of Treviño in this special case and illustrate them on concrete examples.
In this paper, we prove that given a cut-and-project scheme $(G, H, \mathcal {L})$ and a compact window $W \subseteq H$, the natural projection gives a bijection between the Fourier transformable measures on $G \times H$ supported inside the strip ${\mathcal L} \cap (G \times W)$ and the Fourier transformable measures on G supported inside ${\LARGE \curlywedge }(W)$. We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.
We give a characterization of inter-model sets with Euclidean internal space. This characterization is similar to previous results for general inter-model sets obtained independently by Baake, Lenz and Moody, and Aujogue. The new ingredients are two additional conditions. The first condition is on the rank of the abelian group generated by the set of internal differences. The second condition is on a flow on a torus defined via the address map introduced by Lagarias. This flow plays the role of the maximal equicontinuous factor in the previous characterizations.
In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over ${\mathbb Z}$ is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set $\Lambda $ and a fully Euclidean model set with the property that finitely many translates of cover $\Lambda $, we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in $\Lambda $ if and only if k is at most the rank of the ${\mathbb Z}$-module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.
We present a single, connected tile which can tile the plane but only nonperiodically. The tile is hexagonal with edge markings, which impose simple rules as to how adjacent tiles are allowed to meet across edges. The first of these rules is a standard matching rule, that certain decorations match across edges. The second condition is a new type of matching rule, which allows tiles to meet only when certain decorations in a particular orientation are given the opposite charge. This forces the tiles to form a hierarchy of triangles, following a central idea of the Socolar–Taylor tilings. However, the new edge-to-edge orientational matching rule forces this structure in a very different way, which allows for a surprisingly simple proof of aperiodicity. We show that the hull of all tilings satisfying our rules is uniquely ergodic and that almost all tilings in the hull belong to a minimal core of tilings generated by substitution. Identifying tilings which are charge-flips of each other, these tilings are shown to have pure point dynamical spectrum and a regular model set structure.
We prove that in every compact space of Delone sets in ${\mathbb {R}}^d$, which is minimal with respect to the action by translations, either all Delone sets are uniformly spread or continuously many distinct bounded displacement equivalence classes are represented, none of which contains a lattice. The implied limits are taken with respect to the Chabauty–Fell topology, which is the natural topology on the space of closed subsets of ${\mathbb {R}}^d$. This topology coincides with the standard local topology in the finite local complexity setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets associated with well-studied constructions such as cut-and-project sets and substitution tilings, whether or not finite local complexity is assumed.
We study the repetition of patches in self-affine tilings in ${\mathbb {R}}^d$. In particular, we study the existence and non-existence of arithmetic progressions. We first show that an arithmetic condition of the expansion map for a self-affine tiling implies the non-existence of certain one-dimensional arithmetic progressions. Next, we show that the existence of full-rank infinite arithmetic progressions, pure discrete dynamical spectrum, and limit-periodicity are all equivalent for a certain class of self-affine tilings. We finish by giving a complete picture for the existence or non-existence of full-rank infinite arithmetic progressions in the self-similar tilings in ${\mathbb {R}}^d$.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centralizer and normalizer of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralizers, but large normalizers. In particular, we discuss several systems where the normalizer is an infinite extension of the centralizer, including the visible lattice points and the k-free integers in some real quadratic number fields.
We calculate the growth rate of the complexity function for polytopal cut and project sets. This generalizes work of Julien where the almost canonical condition is assumed. The analysis of polytopal cut and project sets has often relied on being able to replace acceptance domains of patterns by so-called cut regions. Our results correct mistakes in the literature where these two notions are incorrectly identified. One may only relate acceptance domains and cut regions when additional conditions on the cut and project set hold. We find a natural condition, called the quasicanonical condition, guaranteeing this property and demonstrate by counterexample that the almost canonical condition is not sufficient for this. We also discuss the relevance of this condition for the current techniques used to study the algebraic topology of polytopal cut and project sets.
In the realm of Delone sets in locally compact, second countable Hausdorff groups, we develop a dynamical systems approach in order to study the continuity behavior of measured quantities arising from point sets. A special focus is both on the autocorrelation, as well as on the density of states for random bounded operators. It is shown that for uniquely ergodic limit systems, the latter measures behave continuously with respect to the Chabauty–Fell convergence of hulls. In the special situation of Euclidean spaces, our results complement recent developments in describing spectra as topological limits: we show that the measured quantities under consideration can be approximated via periodic analogs.
Meyer sets have a relatively dense set of Bragg peaks, and for this reason they may be considered as basic mathematical examples of (aperiodic) crystals. In this paper we investigate the pure point part of the diffraction of Meyer sets in more detail. The results are of two kinds. First, we show that, given a Meyer set and any positive intensity $a$ less than the maximum intensity of its Bragg peaks, the set of Bragg peaks whose intensity exceeds $a$ is itself a Meyer set (in the Fourier space). Second, we show that if a Meyer set is modified by addition and removal of points in such a way that its density is not altered too much (the allowable amount being given explicitly as a proportion of the original density), then the newly obtained set still has a relatively dense set of Bragg peaks.
The groups of (linear) similarity and coincidence isometries of certain modules $\Gamma $ in $d$-dimensional Euclidean space, which naturally occur in quasicrystallography, are considered. It is shown that the structure of the factor group of similarity modulo coincidence isometries is the direct sum of cyclic groups of prime power orders that divide $d$. In particular, if the dimension $d$ is a prime number $p$, the factor group is an elementary abelian $p$-group. This generalizes previous results obtained for lattices to situations relevant in quasicrystallography.
We show how to construct a topological groupoid directly from an inverse semigroup and prove that it is isomorphic to the universal groupoid introduced by Paterson. We then turn to a certain reduction of this groupoid. In the case of inverse semigroups arising from graphs (respectively, tilings), we prove that this reduction is the graph groupoid introduced by Kumjian \et (respectively, the tiling groupoid of Kellendonk). We also study the open invariant sets in the unit space of this reduction in terms of certain order ideals of the underlying inverse semigroup. This can be used to investigate the ideal structure of the associated reduced $C^\ast$-algebra.