To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Amdeberhan et al. [‘Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime’, Aequationes Math. (2024), doi:10.1007/s00010-024-01116-7] defined the generalised cubic partition function $a_c(n)$ as the number of partitions of n whose even parts may appear in $c\geq 1$ different colours and proved that $a_3(7n+4)\equiv 0\pmod {7}$ and $a_5(11n+10)\equiv 0\pmod {11}$ for all $n\geq 0$ via modular forms. Recently, the author [‘A note on congruences for generalized cubic partitions modulo primes’, Integers25 (2025), Article no. A20] gave elementary proofs of these congruences. We prove in this note two infinite families of congruences modulo $5$ for $a_c(n)$ given by
Following recent investigations of vanishing coefficients in infinite products, we show that such instances are very rare when the infinite product is among a family of theta-quotients of modulus five. We also prove that a general family of products of theta functions of modulus five can always be effectively 5-dissected.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.