To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a connected Lie group G and an automorphism T of G, we consider the action of T on Sub$_G$, the compact space of closed subgroups of G endowed with the Chabauty topology. We study the action of T on Sub$^p_G$, the closure in Sub$_G$ of the set of closed one-parameter subgroups of G. We relate the distality of the T-action on Sub$^p_G$ with that of the T-action on G and characterise the same in terms of compactness of the closed subgroup generated by T in Aut$(G)$ when T acts distally on the maximal central torus and G is not a vector group. We extend these results to the action of a subgroup of Aut$(G)$ and equate the distal action of any closed subgroup ${\mathcal H}$ on Sub$^p_G$ with that of every element in ${\mathcal H}$. Moreover, we show that a connected Lie group G acts distally on Sub$^p_G$ by conjugation if and only if G is either compact or is isomorphic to a direct product of a compact group and a vector group. Some of our results generalise those of Shah and Yadav.
We establish some interactions between uniformly recurrent subgroups (URSs) of a group G and cosets topologies $\tau _{\mathcal {N}}$ on G associated to a family $\mathcal {N}$ of normal subgroups of G. We show that when $\mathcal {N}$ consists of finite index subgroups of G, there is a natural closure operation $\mathcal {H} \mapsto \mathrm {cl}_{\mathcal {N}}(\mathcal {H})$ that associates to a URS $\mathcal {H}$ another URS $\mathrm {cl}_{\mathcal {N}}(\mathcal {H})$, called the $\tau _{\mathcal {N}}$-closure of $\mathcal {H}$. We give a characterization of the URSs $\mathcal {H}$ that are $\tau _{\mathcal {N}}$-closed in terms of stabilizer URSs. This has consequences on arbitrary URSs when G belongs to the class of groups for which every faithful minimal profinite action is topologically free. We also consider the largest amenable URS $\mathcal {A}_G$ and prove that for certain coset topologies on G, almost all subgroups $H \in \mathcal {A}_G$ have the same closure. For groups in which amenability is detected by a set of laws (a property that is variant of the Tits alternative), we deduce a criterion for $\mathcal {A}_G$ to be a singleton based on residual properties of G.
We study density properties of orbits for a hypercyclic operator T on a separable Banach space X, and show that exactly one of the following four cases holds: (1) every vector in X is asymptotic to zero with density one; (2) generic vectors in X are distributionally irregular of type $1$; (3) generic vectors in X are distributionally irregular of type $2\frac {1}{2}$ and no hypercyclic vector is distributionally irregular of type $1$; (4) every hypercyclic vector in X is divergent to infinity with density one. We also present some examples concerned with weighted backward shifts on $\ell ^p$ to show that all the above four cases can occur. Furthermore, we show that similar results hold for $C_0$-semigroups.
A tame dynamical system can be characterized by the cardinality of its enveloping (or Ellis) semigroup. Indeed, this cardinality is that of the power set of the continuum $2^{\mathfrak c}$ if the system is non-tame. The semigroup admits a minimal bilateral ideal and this ideal is a union of isomorphic copies of a group $\mathcal H$, called the structure group. For almost automorphic systems, the cardinality of $\mathcal H$ is at most ${\mathfrak c}$ that of the continuum. We show a partial converse of this which holds for minimal systems for which the Ellis semigroup of their maximal equicontinuous factor acts freely, namely that the cardinality of $\mathcal H$ is $2^{{\mathfrak c}}$ if the proximal relation is not transitive and the subgroup generated by products $\xi \zeta ^{-1}$ of singular points $\xi ,\zeta $ in the maximal equicontinuous factor is not open. This refines the above statement about non-tame Ellis semigroups, as it locates a particular algebraic component of the latter which has such a large cardinality.
In this article, we revisit the notion of some hyperbolicity introduced by Pujals and Sambarino [A sufficient condition for robustly minimal foliations. Ergod. Th. & Dynam. Sys.26(1) (2006), 281–289]. We present a more general definition that, in particular, can be applied to the symplectic context (something that was not possible for the previous one). As an application, we construct $C^1$ robustly transitive derived from Anosov diffeomorphisms with mixed behaviour on centre leaves.
We establish sufficient and necessary conditions for the joint transitivity of linear iterates in a minimal topological dynamical system with commuting transformations. This result provides the first topological analogue of the classical Berend and Bergelson joint ergodicity criterion in measure-preserving systems.
We study scaled topological entropy, scaled measure entropy, and scaled local entropy in the context of amenable group actions. In particular, a variational principle is established.
We show that linearly repetitive weighted Delone sets in groups of polynomial growth have a uniquely ergodic hull. This result applies in particular to the linearly repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact second countable groups under a new repetitivity condition which we call tempered repetitivity. For this purpose, we establish a general sub-additive convergence theorem, which also has applications concerning the existence of Banach densities and uniform approximation of the spectral distribution function of finite hopping range operators on Cayley graphs.
Due to a result by Glasner and Downarowicz [Isomorphic extensions and applications. Topol. Methods Nonlinear Anal.48(1) (2016), 321–338], it is known that a minimal system is mean equicontinuous if and only if it is an isomorphic extension of its maximal equicontinuous factor. The majority of known examples of this type are almost automorphic, that is, the factor map to the maximal equicontinuous factor is almost one-to-one. The only cases of isomorphic extensions which are not almost automorphic are again due to Glasner and Downarowicz, who in the same article provide a construction of such systems in a rather general topological setting. Here, we use the Anosov–Katok method to provide an alternative route to such examples and to show that these may be realized as smooth skew product diffeomorphisms of the two-torus with an irrational rotation on the base. Moreover – and more importantly – a modification of the construction allows to ensure that lifts of these diffeomorphisms to finite covering spaces provide novel examples of finite-to-one topomorphic extensions of irrational rotations. These are still strictly ergodic and share the same dynamical eigenvalues as the original system, but show an additional singular continuous component of the dynamical spectrum.
We introduce and study two conditions on groups of homeomorphisms of Cantor space, namely the conditions of being vigorous and of being flawless. These concepts are dynamical in nature, and allow us to study a certain interplay between the dynamics of an action and the algebraic properties of the acting group. A group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is vigorous if for any clopen set A and proper clopen subsets B and C of A, there is $\gamma \in G$ in the pointwise stabiliser of $\mathfrak {C}\backslash A$ with $B\gamma \subseteq C$. A nontrivial group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is flawless if for all k and w a nontrivial freely reduced product expression on k variables (including inverse symbols), a particular subgroup $w(G)_\circ $ of the verbal subgroup $w(G)$ is the whole group. We show: 1) simple vigorous groups are either two-generated by torsion elements, or not finitely generated, 2) flawless groups are both perfect and lawless, 3) vigorous groups are simple if and only if they are flawless, and, 4) the class of vigorous simple subgroups of $\operatorname {Homeo}(\mathfrak {C})$ is fairly broad (the class is closed under various natural constructions and contains many well known groups, such as the commutator subgroups of the Higman–Thompson groups $G_{n,r}$, the Brin-Thompson groups $nV$, Röver’s group $V(\Gamma )$, and others of Nekrashevych’s ‘simple groups of dynamical origin’).
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28(4) (2008), 1291–1322], namely that for every set $S = \{s_1, s_2, \ldots \} \subset \mathbb {N}$ of zero Banach density and finite set A, there exists a minimal zero-entropy subshift $(X, \sigma )$ so that for every sequence $u \in A^{\mathbb {Z}}$, there is $x_u \in X$ with $x_u(s_n) = u(n)$ for all $n \in \mathbb {N}$. Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. Ann. of Math. (2)199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math.384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.
Given a countable group G and a G-flow X, a probability measure $\mu $ on X is called characteristic if it is $\mathrm {Aut}(X, G)$-invariant. Frisch and Tamuz asked about the existence of a minimal G-flow, for any group G, which does not admit a characteristic measure. We construct for every countable group G such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group G and a collection of infinite subgroups $\{\Delta _i: i\in I\}$, when is there a faithful G-flow for which every $\Delta _i$ acts minimally?
Pavlov [Adv. Math.295 (2016), 250–270; Nonlinearity32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.
We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.
Let G be a countable residually finite group (for instance, ${\mathbb F}_2$) and let $\overleftarrow {G}$ be a totally disconnected metric compactification of G equipped with the action of G by left multiplication. For every $r\geq 1$, we construct a Toeplitz G-subshift $(X,\sigma ,G)$, which is an almost one-to-one extension of $\overleftarrow {G}$, having r ergodic measures $\nu _1, \ldots ,\nu _r$ such that for every $1\leq i\leq r$, the measure-theoretic dynamical system $(X,\sigma ,G,\nu _i)$ is isomorphic to $\overleftarrow {G}$ endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.
A hyperbolic group G acts by homeomorphisms on its Gromov boundary. We show that if $\partial G$ is a topological n–sphere, the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard boundary action.
We characterize measure-theoretic sequence entropy pairs of continuous actions of abelian groups using mean sensitivity. This addresses an open question of Li and Yu [On mean sensitive tuples. J. Differential Equations297 (2021), 175–200]. As a consequence of our results, we provide a simpler characterization of Kerr and Li’s independence sequence entropy pairs ($\mu $-IN-pairs) when the measure is ergodic and the group is abelian.
Assume $G\prec H$ are groups and ${\cal A}\subseteq {\cal P}(G),\ {\cal B}\subseteq {\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G-flow $S({\cal A})$ and the H-flow $S({\cal B})$. We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\prec ^* N$. Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$. Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$.
In this paper, we give necessary conditions for an $N$-expansive homeomorphism of a compact metric space to be nonchaotic in the Li–Yorke sense. As application we give a partial answer to a conjecture in [2].