To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper develops a geometric and analytical framework for studying the existence and stability of pinned pulse solutions in a class of non-autonomous reaction–diffusion equations. The analysis relies on geometric singular perturbation theory, matched asymptotic method and nonlocal eigenvalue problem method. First, we derive the general criteria on the existence and spectral (in)stability of pinned pulses in slowly varying heterogeneous media. Then, as a specific example, we apply our theory to a heterogeneous Gierer–Meinhardt (GM) equation, where the nonlinearity varies slowly in space. We identify the conditions on parameters under which the pulse solutions are spectrally stable or unstable. It is found that when the heterogeneity vanishes, the results for the heterogeneous GM system reduce directly to the known results on the homogeneous GM system. This demonstrates the validity of our approach and highlights how the spatial heterogeneity gives rise to richer pulse dynamics compared to the homogeneous case.
This overview discusses the inverse scattering theory for the Kadomtsev–Petviashvili II equation, focusing on the inverse problem for perturbed multi-line solitons. Despite the introduction of new techniques to handle singularities, the theory remains consistent across various backgrounds, including the vacuum, 1-line and multi-line solitons.
under the homogeneous Neumann boundary condition for u, vi and the homogeneous Dirichlet boundary condition for $\bf{w}$ in a smooth bounded domain $\Omega \subset {\mathbb{R}^n}\left( {n \geqslant 1} \right),$ where ρ > 0, µ > 0, α > 1 and $i=1,\ldots,k$. We reveal that when the index α, the spatial variable n, and the number of equations k satisfy certain relationships, the global solution of the system exists and converges to the constant equilibrium state in the form of exponential convergence.
This paper is focused on the existence and uniqueness of nonconstant steady states in a reaction–diffusion–ODE system, which models the predator–prey interaction with Holling-II functional response. Firstly, we aim to study the occurrence of regular stationary solutions through the application of bifurcation theory. Subsequently, by a generalized mountain pass lemma, we successfully demonstrate the existence of steady states with jump discontinuity. Furthermore, the structure of stationary solutions within a one-dimensional domain is investigated and a variety of steady-state solutions are built, which may exhibit monotonicity or symmetry. In the end, we create heterogeneous equilibrium states close to a constant equilibrium state using bifurcation theory and examine their stability.
where the homogeneous nonlinearities $f(s)=\alpha_0|s|^p+\alpha_1|s|^{p-1}s$, with p > 1. If $\alpha_0,\alpha_1 \gt 0$, $\alpha\in\mathbb{R}$, and γ < 0 satisfying $\beta\gamma=-1$, we show that for $1 \lt p \lt 5$, there exists a constrained ground state traveling wave solution with travelling velocity $\omega \gt \alpha-2$. Furthermore, we obtain the exponential decay estimates and the weak non-degeneracy of the solution. Finally, we show that the solution is spectrally stable. This is a continuation of recent work [1] on existence and stability for a water wave model with non-homogeneous nonlinearities.
where $N\geq2$, $0 \lt s \lt 1$, $2 \lt q \lt p \lt 2_s^*=2N/(N-2s)$, and $\mu\in\mathbb{R}$. The primary challenge lies in the inhomogeneity of the nonlinearity.We deal with the following three cases: (i) for $2 \lt q \lt p \lt 2+4s/N$ and µ < 0, there exists a threshold mass a0 for the existence of the least energy normalized solution; (ii) for $2+4s/N \lt q \lt p \lt 2_s^*$ and µ > 0, we reveal the existence of the ground state solution, explore the strong instability of standing waves, and provide a blow-up criterion; (iii) for $2 \lt q\leq2+4s/N \lt p \lt 2_s^*$ and µ < 0, the strong instability of standing wave solutions is demonstrated. These findings are illuminated through variational characterizations, the profile decomposition, and the virial estimate.
where $d \geq 1$, $\mu \in \mathbb{R}$ and $0 \lt \sigma \lt \infty$ if $1 \leq d \leq 4$ and $0 \lt \sigma \lt 4/(d-4)$ if $d \geq 5$. In the mass critical and supercritical cases, we establish the existence of blowup solutions to the problem for cylindrically symmetric data. The result extends the known ones with respect to blowup of solutions to the problem for radially symmetric data.
where $q\ge p\ge2$, r > q, $0 \lt \mu \lt N$ and $w,f \in L^1_{\rm loc}(\mathbb{R}^N)$ are two non-negative functions such that $w(x) \le C_1|x|^a$ and $f(x) \ge C_2|x|^b$ for all $|x| \gt R_0$, where $R_0,C_1,C_2 \gt 0$ and $a,b\in\mathbb{R}$. Under some appropriate assumptions on p, q, r, µ, a, b and N, we prove various Liouville-type theorems for weak solutions which are stable or stable outside a compact set of $\mathbb{R}^N$. First, we establish the standard integral estimates via stability property to derive the non-existence results for stable weak solutions. Then, by means of the Pohožaev identity, we deduce the Liouville-type theorem for weak solutions which are stable outside a compact set.
We consider a parabolic-parabolic chemotaxis system with singular chemotactic sensitivity and source functions, which is originally introduced by Short et al to model the spatio-temporal behaviour of urban criminal activities with the particular value of the chemotactic sensitivity parameter $\chi =2$. The available analytical findings for this urban crime model including $\chi =2$ are restricted either to one-dimensional setting, or to initial data and source functions with appropriate smallness, or to initial data and source functions with some radial symmetry. In the present work, our first result asserts that for any $\chi \gt 0$ the initial-boundary value problem of this urban crime model possesses a global generalised solution in the two-dimensional setting, without imposing any small or radial conditions on initial data and source functions. Our second result presents the asymptotic behaviour of such solution, under some additional assumptions on source functions.
Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.
We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.
In this paper, we consider the existence and stability of singular patterns in a fractional Ginzburg–Landau equation with a mean field. We prove the existence of three types of singular steady-state patterns (double fronts, single spikes, and double spikes) by solving their respective consistency conditions. In the case of single spikes, we prove the stability of single small spike solution for sufficiently large spatial period by studying an explicit non-local eigenvalue problem which is equivalent to the original eigenvalue problem. For the other solutions, we prove the instability by using the variational characterisation of eigenvalues. Finally, we present the results of some numerical computations of spike solutions based on the finite difference methods of Crank–Nicolson and Adams–Bashforth.
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain $\Omega = \mathbb {T}\times \mathbb {R}$ with $\mathbb {T}=[0,\,1]$ being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field $(1,\,0)$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in $H^{1}$ as $t\to \infty$. As a consequence, the solution converges to its horizontal average asymptotically.
We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$.
where $p>0$ and $ 0<s<1 $. We establish a Liouville-type theorem for positive solutions in the case $p>1$ and give a uniform lower bound of positive solutions when $0<p\leq 1$. In particular, when v is independent of the time variable, we obtain a similar result for the fractional elliptic Lichnerowicz equation
with $p>0$ and $0<s<1$. This extends the result of Brézis [‘Comments on two notes by L. Ma and X. Xu’, C. R. Math. Acad. Sci. Paris349(5–6) (2011), 269–271] to the fractional Laplacian.
This paper investigates global dynamics of an infection age-space structured cholera model. The model describes the vibrio cholerae transmission in human population, where infection-age structure of vibrio cholerae and infectious individuals are incorporated to measure the infectivity during the different stage of disease transmission. The model is described by reaction–diffusion models involving the spatial dispersal of vibrios and the mobility of human populations in the same domain Ω ⊂ ℝn. We first give the well-posedness of the model by converting the model to a reaction–diffusion model and two Volterra integral equations and obtain two constant equilibria. Our result suggest that the basic reproduction number determines the dichotomy of disease persistence and extinction, which is achieved by studying the local stability of equilibria, disease persistence and global attractivity of equilibria.
In this paper, we study the initial-boundary value problem of a repulsion Keller–Segel system with a logarithmic sensitivity modelling the reinforced random walk. By establishing an energy–dissipation identity, we prove the existence of classical solutions in two dimensions as well as existence of weak solutions in the three-dimensional setting. Moreover, it is shown that the weak solutions enjoy an eventual regularity property, i.e., it becomes regular after certain time T > 0. An exponential convergence rate towards the spatially homogeneous steady states is obtained as well. We adopt a new approach developed recently by the author to study the eventual regularity. The argument is based on observation of the exponential stability of constant solutions in scaling-invariant spaces together with certain dissipative property of the global solutions in the same spaces.
In this paper, we derive and analyse mean-field models for the dynamics of groups of individuals undergoing a random walk. The random motion of individuals is only influenced by the perceived densities of the different groups present as well as the available space. All individuals have the tendency to stay within their own group and avoid the others. These interactions lead to the formation of aggregates in case of a single species and to segregation in the case of multiple species. We derive two different mean-field models, which are based on these interactions and weigh local and non-local effects differently. We discuss existence and stability properties of solutions for both models and illustrate the rich dynamics with numerical simulations.
We prove that any simple planar travelling wave solution to the membrane equation in spatial dimension $d\geqslant 3$ with bounded spatial extent is globally nonlinearly stable under sufficiently small compactly supported perturbations, where the smallness depends on the size of the support of the perturbation as well as on the initial travelling wave profile. The main novelty of the argument is the lack of higher order peeling in our vector-field-based method. In particular, the higher order energies (in fact, all energies at order $2$ or higher) are allowed to grow polynomially (but in a controlled way) in time. This is in contrast with classical global stability arguments, where only the ‘top’ order energies used in the bootstrap argument exhibit growth, and reflects the fact that the background travelling wave solution has ‘infinite energy’ and the coefficients of the perturbation equation are not asymptotically Lorentz invariant. Nonetheless, we can prove that the perturbation converges to zero in $C^{2}$ by carefully analysing the nonlinear interactions and exposing a certain ‘vestigial’ null structure in the equations.