Assume that   $\Omega$  is a Hartogs domain in
 $\Omega$  is a Hartogs domain in   ${{\mathbb{C}}^{1+n}}$ , defined as
 ${{\mathbb{C}}^{1+n}}$ , defined as   $\Omega =\left\{ \left( z,w \right)\,\in \,{{\mathbb{C}}^{1+n}}\,:\left| z \right|\,<\,\mu \left( w \right),w\,\in H \right\}$ , where
 $\Omega =\left\{ \left( z,w \right)\,\in \,{{\mathbb{C}}^{1+n}}\,:\left| z \right|\,<\,\mu \left( w \right),w\,\in H \right\}$ , where   $H$  is an open set in
 $H$  is an open set in   ${{\mathbb{C}}^{n}}$  and
 ${{\mathbb{C}}^{n}}$  and   $\mu$  is a continuous function with positive values in
 $\mu$  is a continuous function with positive values in   $H$  such that –ln
 $H$  such that –ln   $\mu$  is a strongly plurisubharmonic function in
 $\mu$  is a strongly plurisubharmonic function in   $H$ . Let
 $H$ . Let   ${{\Omega }_{w}}=\Omega \cap \left( \mathbb{C}\times \left\{ w \right\} \right)$ . For a given set
 ${{\Omega }_{w}}=\Omega \cap \left( \mathbb{C}\times \left\{ w \right\} \right)$ . For a given set   $E$  contained in
 $E$  contained in   $H$  of the type
 $H$  of the type   ${{G}_{\delta }}$  we construct a holomorphic function
 ${{G}_{\delta }}$  we construct a holomorphic function   $f\in \mathbb{O}\left( \Omega\right)$  such that
 $f\in \mathbb{O}\left( \Omega\right)$  such that
   $$E=\left\{ w\in {{\mathbb{C}}^{n}}:\int\limits_{{{\Omega }_{w}}}{{{\left| f\left( \cdot ,w \right) \right|}^{2}}d{{\mathfrak{L}}^{2}}=\infty } \right\}.$$
 $$E=\left\{ w\in {{\mathbb{C}}^{n}}:\int\limits_{{{\Omega }_{w}}}{{{\left| f\left( \cdot ,w \right) \right|}^{2}}d{{\mathfrak{L}}^{2}}=\infty } \right\}.$$