To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish the pointwise equidistribution of self-similar measures in the complex plane. Let $\beta \in \mathbb Z[\mathrm{i}]$, whose complex conjugate $\overline{\beta}$ is not a divisor of β, and $T \subset \mathbb Z[\mathrm{i}]$ a finite subset. Let µ be a non-atomic self-similar measure with respect to the IFS $\big\{f_{t}(z)=\frac{z+t}{\beta}\colon t\in T\big\}$. For $\alpha \in \mathbb Z[\mathrm{i}]$, if α and β are relatively prime, then we show that the sequence $(\alpha^n z)_{n\ge 1}$ is equidistributed modulo one for µ-almost everywhere $z \in \mathbb{C}$. We also discuss normality of radix expansions in Gaussian integer base, and obtain pointwise normality. Our results generalize partially the classical results in the real line to the complex plane.
Let $ K $ be a compact subset of the d-torus invariant under an expanding diagonal endomorphism with s distinct eigenvalues. Suppose the symbolic coding of K satisfies weak specification. When $ s \leq 2 $, we prove that the following three statements are equivalent: (A) the Hausdorff and box dimensions of $ K $ coincide; (B) with respect to some gauge function, the Hausdorff measure of $ K $ is positive and finite; (C) the Hausdorff dimension of the measure of maximal entropy on $ K $ attains the Hausdorff dimension of $ K $. When $ s \geq 3 $, we find some examples in which statement (A) does not hold but statement (C) holds, which is a new phenomenon not appearing in the planar cases. Through a different probabilistic approach, we establish the equivalence of statements (A) and (B) for Bedford–McMullen sponges.
Non-autonomous self-similar sets are a family of compact sets which are, in some sense, highly homogeneous in space but highly inhomogeneous in scale. The main purpose of this paper is to clarify various regularity properties and separation conditions relevant for the fine local scaling properties of these sets. A simple application of our results is a precise formula for the Assouad dimension of non-autonomous self-similar sets in $\mathbb{R}^d$ satisfying a certain “bounded neighbourhood” condition, which generalises earlier work of Li–Li–Miao–Xi and Olson–Robinson–Sharples. We also see that the bounded neighbourhood assumption is, in few different senses, as general as possible.
Let $\mu _{M,D}$ be the self-similar measure generated by $M=RN^q$ and the product-form digit set $D=\{0,1,\ldots ,N-1\}\oplus N^{p_1}\{0,1,\ldots ,N-1\}\oplus \cdots \oplus N^{p_s}\{0,1,\ldots ,N-1\}$, where $R\geq 2$, $N\geq 2$, q, $p_i(1\leq i\leq s)$ are integers with $\gcd (R,N)=1$ and $1\leq p_1<p_2<\cdots <p_s<q$. In this paper, we first show that $\mu _{M,D}$ is a spectral measure with a model spectrum $\Lambda $. Then, we completely settle two types of spectral eigenvalue problems for $\mu _{M,D}$. In the first case, for a real t, we give a necessary and sufficient condition under which $t\Lambda $ is also a spectrum of $\mu _{M,D}$. In the second case, we characterize all possible real numbers t such that $\Lambda '\subset \mathbb {R}$ and $t\Lambda '$ are both spectra of $\mu _{M,D}$.
where $(m_0, m_1, \ldots , m_v) \in \mathbb {N}^{v+1}$, $m_0 = \sum _{i=1}^{v} m_i$ and $v \ge 2$, we estimate lower and upper bounds of the supremum of the Hausdorff dimension of sets on the real line that uniformly avoid nontrivial zeros of any f in $\mathcal {G}$.
We show that the Hausdorff dimension of the attractor of an inhomogeneous self-similar iterated function system (or self-similar IFS) can be well approximated by the Hausdorff dimension of the attractor of another inhomogeneous self-similar IFS satisfying the strong separation condition. We also determine a formula for the Hausdorff dimension of the algebraic product and sum of the inhomogeneous attractor.
In one-dimensional Diophantine approximation, the Diophantine properties of a real number are characterized by its partial quotients, especially the growth of its large partial quotients. Notably, Kleinbock and Wadleigh [Proc. Amer. Math. Soc.146(5) (2018), 1833–1844] made a seminal contribution by linking the improvability of Dirichlet’s theorem to the growth of the product of consecutive partial quotients. In this paper, we extend the concept of Dirichlet non-improvable sets within the framework of shrinking target problems. Specifically, consider the dynamical system $([0,1), T)$ of continued fractions. Let $\{z_n\}_{n \ge 1}$ be a sequence of real numbers in $[0,1]$ and let $B> 1$. We determine the Hausdorff dimension of the following set: $ \{x\in [0,1):|T^nx-z_n||T^{n+1}x-Tz_n|<B^{-n}\text { infinitely often}\}. $
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
We prove the following restricted projection theorem. Let $n\ge 3$ and $\Sigma \subset S^{n}$ be an $(n-1)$-dimensional $C^2$ manifold such that $\Sigma$ has sectional curvature $\gt1$. Let $Z \subset \mathbb{R}^{n+1}$ be analytic and let $0 \lt s \lt \min\{\dim Z, 1\}$. Then
In particular, for almost every $z \in \Sigma$, $\dim (Z \cdot z) = \min\{\dim Z, 1\}$.
The core idea, originated from Käenmäki–Orponen–Venieri, is to transfer the restricted projection problem to the study of the dimension lower bound of Furstenberg sets of cinematic family contained in $C^2([0,1]^{n-1})$. This cinematic family of functions with multivariables are extensions of those of one variable by Pramanik–Yang–Zahl and Sogge. Since the Furstenberg sets of cinematic family contain the affine Furstenberg sets as a special case, the dimension lower bound of Furstenberg sets improves the one by Héra, Héra–Keleti–Máthé and Dąbrowski–Orponen–Villa.
Moreover, our method to show the restricted projection theorem can also give a new proof for the Mattila projection theorem in $\mathbb{R}^n$ with $n \ge 3$.
We provide two methods to characterise the connectedness of all d-dimensional generalised Sierpiński sponges whose corresponding iterated function systems (IFSs) are allowed to have rotational and reflectional components. Our approach is to reduce it to an intersection problem between the coordinates of graph-directed attractors. More precisely, let $(K_1,\ldots,K_n)$ be a Cantor-type graph-directed attractor in ${\mathbb {R}}^d$. By creating an auxiliary graph, we provide an effective criterion for whether $K_i\cap K_j$ is empty for every pair of $1\leq i,j\leq n$. Moreover, the emptiness can be checked by examining only a finite number of geometric approximations of the attractor. The approach is also applicable to more general graph-directed systems.
In this article, we calculate the Birkhoff spectrum in terms of the Hausdorff dimension of level sets for Birkhoff averages of continuous potentials for a certain family of diagonally affine iterated function systems. Also, we study Besicovitch–Eggleston sets for finite generalized Lüroth series number systems with redundancy. The redundancy refers to the fact that each number $x \in [0,1]$ has uncountably many expansions in the system. We determine the Hausdorff dimension of digit frequency sets for such expansions along fibres.
In this paper,the linear space $\mathcal F$ of a special type of fractal interpolation functions (FIFs) on an interval I is considered. Each FIF in $\mathcal F$ is established from a continuous function on I. We show that, for a finite set of linearly independent continuous functions on I, we get linearly independent FIFs. Then we study a finite-dimensional reproducing kernel Hilbert space (RKHS) $\mathcal F_{\mathcal B}\subset\mathcal F$, and the reproducing kernel $\mathbf k$ for $\mathcal F_{\mathcal B}$ is defined by a basis of $\mathcal F_{\mathcal B}$. For a given data set $\mathcal D=\{(t_k, y_k) : k=0,1,\ldots,N\}$, we apply our results to curve fitting problems of minimizing the regularized empirical error based on functions of the form $f_{\mathcal V}+f_{\mathcal B}$, where $f_{\mathcal V}\in C_{\mathcal V}$ and $f_{\mathcal B}\in \mathcal F_{\mathcal B}$. Here $C_{\mathcal V}$ is another finite-dimensional RKHS of some classes of regular continuous functions with the reproducing kernel $\mathbf k^*$. We show that the solution function can be written in the form $f_{\mathcal V}+f_{\mathcal B}=\sum_{m=0}^N\gamma_m\mathbf k^*_{t_m} +\sum_{j=0}^N \alpha_j\mathbf k_{t_j}$, where ${\mathbf k}_{t_m}^\ast(\cdot)={\mathbf k}^\ast(\cdot,t_m)$ and $\mathbf k_{t_j}(\cdot)=\mathbf k(\cdot,t_j)$, and the coefficients γm and αj can be solved by a system of linear equations.
Let $[a_1(x),a_2(x),\ldots ,a_n(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$ and $q_n(x)$ be the denominator of its nth convergent. The irrationality exponent and Khintchine exponent of x are respectively defined by
We study the multifractal spectrum of the irrationality exponent and the Khintchine exponent for continued fractions with nondecreasing partial quotients. For any $v>2$, we completely determine the Hausdorff dimensions of the sets $\{x\in [0,1): a_1(x)\leq a_2(x)\leq \cdots , \overline {v}(x)=v\}$ and
For $ \beta>1 $, let $ T_\beta $ be the $\beta $-transformation on $ [0,1) $. Let $ \beta _1,\ldots ,\beta _d>1 $ and let $ \mathcal P=\{P_n\}_{n\ge 1} $ be a sequence of parallelepipeds in $ [0,1)^d $. Define
When each $ P_n $ is a hyperrectangle with sides parallel to the axes, the ‘rectangle to rectangle’ mass transference principle by Wang and Wu [Mass transference principle from rectangles to rectangles in Diophantine approximation. Math. Ann.381 (2021) 243–317] is usually employed to derive the lower bound for $\dim _{\mathrm {H}} W(\mathcal P)$, where $\dim _{\mathrm {H}}$ denotes the Hausdorff dimension. However, in the case where $ P_n $ is still a hyperrectangle but with rotation, this principle, while still applicable, often fails to yield the desired lower bound. In this paper, we determine the optimal cover of parallelepipeds, thereby obtaining $\dim _{\mathrm {H}} W(\mathcal P)$. We also provide several examples to illustrate how the rotations of hyperrectangles affect $\dim _{\mathrm {H}} W(\mathcal P)$.
We define balanced self-similar quasi-round carpets and compare the carpet moduli of some path families relating to such a carpet. Then, using some known results on quasiconformal geometry of carpets, we prove that the group of quasisymmetric self-homeomorphisms of every balanced self-similar quasi-round carpet is finite. Furthermore, we prove that some balanced self-similar carpets in the unit square with strong geometric symmetry are quasisymmetrically rigid by using the quasisymmetry of weak tangents of carpets.
We study the multifractal properties of the uniform approximation exponent and asymptotic approximation exponent in continued fractions. As a corollary, we calculate the Hausdorff dimension of the uniform Diophantine set
$$ \begin{align*} {\mathcal{U}(\hat{\nu})}= &\ \{x\in[0,1)\colon \text{for all }N\gg1,\text{ there exists }n\in[1,N],\\&\ \ \text{ such that }|T^{n}(x)-y| < |I_{N}(y)|^{\hat{\nu}}\} \end{align*} $$
for a class of quadratic irrational numbers $y\in [0,1)$. These results contribute to the study of the uniform Diophantine approximation, and apply to investigating the multifractal properties of run-length function in continued fractions.
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
We compare the dimension of a non-invertible self-affine set to the dimension of the respective invertible self-affine set. In particular, for generic planar self-affine sets, we show that the dimensions coincide when they are large and differ when they are small. Our study relies on thermodynamic formalism where, for dominated and irreducible matrices, we completely characterise the behaviour of the pressures.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
Let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of an irrational number $x\in [0,1)$. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $x\in [0,1)$,
We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.