To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide two constructions of hyperbolic metrics on 3-manifolds with Heegaard splittings that satisfy certain topological conditions, which both apply to random Heegaard splitting with asymptotic probability 1. These constructions provide a lot of control on the resulting metric, allowing us to prove various results about the coarse growth rate of geometric invariants, such as diameter and injectivity radius, and about arithmeticity and commensurability in families of random 3-manifolds. For example, we show that the diameter of a random Heegaard splitting grows coarsely linearly in the length of the associated random walk. The constructions only use tools from the deformation theory of Kleinian groups, that is, we do not rely on the solution of the geometrization conjecture by Perelman. In particular, we give a proof of Maher’s result that random 3-manifolds are hyperbolic that bypasses geometrization.
Let G be a permutation group on a finite set $\Omega $. The base size of G is the minimal size of a subset of $\Omega $ with trivial pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups arising in the O’Nan–Scott theorem for which the exact base size has been computed in all cases. Our methods also allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
We discuss a variant, named ‘Rattle’, of the product replacement algorithm. Rattle is a Markov chain, that returns a random element of a black box group. The limiting distribution of the element returned is the uniform distribution. We prove that, if the generating sequence is long enough, the probability distribution of the element returned converges unexpectedly quickly to the uniform distribution.
We prove a Banach version of Żuk’s criterion for groups acting on partite (i.e., colorable) simplicial complexes. Using this new criterion, we derive a new fixed point theorem for random groups in the Gromov density model with respect to several classes of Banach spaces ($L^p$ spaces, Hilbertian spaces, uniformly curved spaces). In particular, we show that for every p, a group in the Gromov density model has asymptotically almost surely property $(F L^p)$ and give a sharp lower bound for the growth of the conformal dimension of the boundary of such group as a function of the parameters of the density model.
Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$. We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$, where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g.
Given $\phi \in \mathbb {X}_{g,n}$ and $\gamma \in \Gamma _{g}$, we let $\mathsf {fix}_{\gamma }(\phi )$ be the number of fixed points of the permutation $\phi (\gamma )$. The function $\mathsf {fix}_{\gamma }$ is a special case of a natural family of functions on $\mathbb {X}_{g,n}$ called Wilson loops. Our new methodology leads to an asymptotic formula, as $n\to \infty $, for the expectation of $\mathsf {fix}_{\gamma }$ with respect to the uniform probability measure on $\mathbb {X}_{g,n}$, which is denoted by $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$. We prove that if $\gamma \in \Gamma _{g}$ is not the identity and q is maximal such that $\gamma $ is a qth power in $\Gamma _{g}$, then
as $n\to \infty $, where $d\left (q\right )$ is the number of divisors of q. Even the weaker corollary that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$ as $n\to \infty $ is a new result of this paper. We also prove that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ can be approximated to any order $O(n^{-M})$ by a polynomial in $n^{-1}$.
The k-gonal models of random groups are defined as the quotients of free groups on n generators by cyclically reduced words of length k. As k tends to infinity, this model approaches the Gromov density model. In this paper, we show that for any fixed $d_0 \in (0, 1)$, if positive k-gonal random groups satisfy Property (T) with overwhelming probability for densities $d >d_0$, then so do jk-gonal random groups, for any $j \in \mathbb{N}$. In particular, this shows that for densities above 1/3, groups in 3k-gonal models satisfy Property (T) with probability 1 as n approaches infinity.
Let $K$ be a subgroup of a finite group $G$. The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$. Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$. We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$-bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$. We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$-bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$, or a Sylow subgroup, etc.
For any (Hausdorff) compact group G, denote by $\mathrm{cp}(G)$ the probability that a randomly chosen pair of elements of G commute. We prove that there exists a finite group H such that $\mathrm{cp}(G)= {\mathrm{cp}(H)}/{|G:F|^2}$, where F is the FC-centre of G and H is isoclinic to F with $\mathrm{cp}(F)=\mathrm{cp}(H)$ whenever $\mathrm{cp}(G)>0$. In addition, we prove that a compact group G with $\mathrm{cp}(G)>\tfrac {3}{40}$ is either solvable or isomorphic to $A_5 \times Z(G)$, where $A_5$ denotes the alternating group of degree five and the centre $Z(G)$ of G contains the identity component of G.
The problem of finding the number of ordered commuting tuples of elements in a finite group is equivalent to finding the size of the solution set of the system of equations determined by the commutator relations that impose commutativity among any pair of elements from an ordered tuple. We consider this type of systems for the case of ordered triples and express the size of the solution set in terms of the irreducible characters of the group. The obtained formulas are natural extensions of Frobenius’ character formula that calculates the number of ways a group element is a commutator of an ordered pair of elements in a finite group. We discuss how our formulas can be used to study the probability distributions afforded by these systems of equations, and we show explicit calculations for dihedral groups.
This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that $p_n\asymp R^{-n}n^{-3/2}$ for spectrally positive-recurrent random walks, where $p_n$ is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.
We develop the concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups. We give characterizations of the level of a character in terms of its Lusztig label and in terms of its degree. Then we prove explicit upper bounds for character values at elements with not-too-large centralizers and derive upper bounds on the covering number and mixing time of random walks corresponding to these conjugacy classes. We also characterize the level of the character in terms of certain dual pairs and prove explicit exponential character bounds for the character values, provided that the level is not too large. Several further applications are also provided. Related results for other finite classical groups are obtained in the sequel [Guralnick et al. ‘Character levels and character bounds for finite classical groups’, Preprint, 2019, arXiv:1904.08070] by different methods.
We extend classical density theorems of Borel and Dani–Shalom on lattices in semisimple, respectively solvable algebraic groups over local fields to approximate lattices. Our proofs are based on the observation that Zariski closures of approximate subgroups are close to algebraic subgroups. Our main tools are stationary joinings between the hull dynamical systems of discrete approximate subgroups and their Zariski closures.
Let $G$ be a finite group acting transitively on a set $\unicode[STIX]{x1D6FA}$. We study what it means for this action to be quasirandom, thereby generalizing Gowers’ study of quasirandomness in groups. We connect this notion of quasirandomness to an upper bound for the convolution of functions associated with the action of $G$ on $\unicode[STIX]{x1D6FA}$. This convolution bound allows us to give sufficient conditions such that sets $S\subseteq G$ and $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2}\subseteq \unicode[STIX]{x1D6FA}$ contain elements $s\in S,\unicode[STIX]{x1D714}_{1}\in \unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D714}_{2}\in \unicode[STIX]{x1D6E5}_{2}$ such that $s(\unicode[STIX]{x1D714}_{1})=\unicode[STIX]{x1D714}_{2}$. Other consequences include an analogue of ‘the Gowers trick’ of Nikolov and Pyber for general group actions, a sum-product type theorem for large subsets of a finite field, as well as applications to expanders and to the study of the diameter and width of a finite simple group.
We study the distribution of products of conjugacy classes in finite simple groups, obtaining effective two-step mixing results, which give rise to an approximation to a conjecture of Thompson.
Our results, combined with work of Gowers and Viola, also lead to the solution of recent conjectures they posed on interleaved products and related complexity lower bounds, extending their work on the groups SL(2, q) to all (non-abelian) finite simple groups.
In particular it follows that, if G is a finite simple group, and A, B ⊆ Gt for t ⩾ 2 are subsets of fixed positive densities, then, as a = (a1, . . ., at) ∈ A and b = (b1, . . ., bt) ∈ B are chosen uniformly, the interleaved product a • b:=a1b1 . . . atbt is almost uniform on G (with quantitative estimates) with respect to the ℓ∞-norm.
It also follows that the communication complexity of an old decision problem related to interleaved products of a, b ∈ Gt is at least Ω(t log |G|) when G is a finite simple group of Lie type of bounded rank, and at least Ω(t log log |G|) when G is any finite simple group. Both these bounds are best possible.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
We present the results of computer experiments suggesting that the probability that a random multiword in a free group is virtually geometric decays to zero exponentially quickly in the length of the multiword. We also prove this fact.
Inspired by Gowers' seminal paper (W. T. Gowers, Comb. Probab. Comput.17(3) (2008), 363–387, we will investigate quasi-randomness for profinite groups. We will obtain bounds for the minimal degree of non-trivial representations of SLk(ℤ/(pnℤ)) and Sp2k(ℤ/(pnℤ)). Our method also delivers a lower bound for the minimal degree of a faithful representation of these groups. Using the suitable machinery from functional analysis, we establish exponential lower and upper bounds for the supremal measure of a product-free measurable subset of the profinite groups SLk(ℤp) and Sp2k(ℤp). We also obtain analogous bounds for a special subgroup of the automorphism group of a regular tree.