To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we introduce the type and typeset invariants for equicontinuous group actions on Cantor sets; that is, for generalized odometers. These invariants are collections of equivalence classes of asymptotic Steinitz numbers associated to the action. We show the type is an invariant of the return equivalence class of the action. We introduce the notion of commensurable typesets and show that two actions which are return equivalent have commensurable typesets. Examples are given to illustrate the properties of the type and typeset invariants. The type and typeset invariants are used to define homeomorphism invariants for solenoidal manifolds.
For a $k$-uniform hypergraph $\mathcal{H}$ on vertex set $\{1, \ldots, n\}$ we associate a particular signed incidence matrix $M(\mathcal{H})$ over the integers. For $\mathcal{H} \sim \mathcal{H}_k(n, p)$ an Erdős–Rényi random $k$-uniform hypergraph, ${\mathrm{coker}}(M(\mathcal{H}))$ is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for $p = \omega (1/n^{k - 1})$, ${\mathrm{coker}}(M(\mathcal{H}))$ is torsion-free.
For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.
A proof is given of the following theorem, which characterizes full automorphism groups of ordered abelian groups: a group$H$is the automorphism group of some ordered abelian group if and only if$H$is right-orderable.
Let A be a torsion free abelian group. We say that a group K is a finite essential extension of A if K contains an essential subgroup of finite index which is isomorphic to A. Such K admits a representation as (A ℤ xkx)/ℤky where y = Nx + a for some k x k matrix N over Z and α ∈ Ak satisfying certain conditions of relative primeness and ℤk = {(α1,..., αk) : αi, ∈ ℤ}. The concept of absolute width of an f.e.e. K of A is defined and it is shown to be strictly smaller than the rank of A. A kind of basis substitution with respect to Smith diagonal matrices is shown to hold for homogeneous completely decomposable groups. This result together with general properties of our representations are used to provide a self contained proof that acd groups with two critical types are direct sum of groups of rank one and two.
Les groupes p-torsion forment une classe de groupes abéliens mixtes dont les sous-groupes de p-base sont de torsion. Nous montrons ici que la généralisation naturelle à ces groupes de la notion de sous-groupe large développée pour les groupes primaires par R. S. Pierce, permet d'obtenir des résultats analogues. Ainsi nous caractérisons les sous-groupes p-larges d'un groupe p-torsion G en fonction des suites non-décroissantes d'entiers non-négatifs u = (ui) qui satisfont à la condition d'écart pour G. On obtient: un sous-groupe A du groupe p-torsion G est p-large si, et seulement si A est de la forme G(u) pour une suite u telle que pour tout x ∈ G, la suite (h(pix)) est plus grande presque partout que la suite u.
Nous déterminons aussi, les sous-groupes p-large de , le complété p-adique d'une somme directe de groupes cycliques non bornés B, ainsi que ceux des sous-groupes p-purs totalement invariants de engendrés par un élément.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.