Let   $c\,=\,\left( {{c}_{1}},\ldots ,{{c}_{n}} \right)$  be such that
 $c\,=\,\left( {{c}_{1}},\ldots ,{{c}_{n}} \right)$  be such that   ${{c}_{1}}\,\ge \,\cdots \,\ge \,{{c}_{n}}$ . The
 ${{c}_{1}}\,\ge \,\cdots \,\ge \,{{c}_{n}}$ . The   $c$ -numerical range of an
 $c$ -numerical range of an   $n\,\times \,n$  matrix
 $n\,\times \,n$  matrix   $A$  is defined by
 $A$  is defined by
   $${{W}_{c}}\left( A \right)\,=\,\left\{ \sum\limits_{j=1}^{n}{{{c}_{j}}\left( A{{x}_{j}},\,{{x}_{j}} \right)\,:\,\left\{ {{x}_{1}},\ldots ,{{x}_{n}} \right\}\,\text{an}\,\text{orthonormal basis for }{{\mathbf{C}}^{n}}} \right\}\,,$$
 $${{W}_{c}}\left( A \right)\,=\,\left\{ \sum\limits_{j=1}^{n}{{{c}_{j}}\left( A{{x}_{j}},\,{{x}_{j}} \right)\,:\,\left\{ {{x}_{1}},\ldots ,{{x}_{n}} \right\}\,\text{an}\,\text{orthonormal basis for }{{\mathbf{C}}^{n}}} \right\}\,,$$  
and the   $c$ -numerical radius of
 $c$ -numerical radius of   $A$  is defined by
 $A$  is defined by   ${{r}_{c}}\left( A \right)\,=\,\max \left\{ \left| z \right|\,:\,z\,\in \,{{W}_{c}}\left( A \right) \right\}$ . We determine the structure of those linear operators
 ${{r}_{c}}\left( A \right)\,=\,\max \left\{ \left| z \right|\,:\,z\,\in \,{{W}_{c}}\left( A \right) \right\}$ . We determine the structure of those linear operators   $\phi$  on algebras of block triangular matrices, satisfying
 $\phi$  on algebras of block triangular matrices, satisfying
   $${{W}_{c}}\left( \phi \left( A \right) \right)={{W}_{c}}\left( A \right)\text{for}\,\,\text{all}\,\,A\,\text{or}\,\,{{r}_{c}}\left( \phi \left( A \right) \right)={{r}_{c}}\left( A \right)\text{for}\,\,\text{all}\,A.$$
 $${{W}_{c}}\left( \phi \left( A \right) \right)={{W}_{c}}\left( A \right)\text{for}\,\,\text{all}\,\,A\,\text{or}\,\,{{r}_{c}}\left( \phi \left( A \right) \right)={{r}_{c}}\left( A \right)\text{for}\,\,\text{all}\,A.$$