To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ presentation, for the torus equivariant quantum K theory of the Grassmann manifold $\mathrm {Gr}(k;n)$, inspired from physics, and stated in an earlier paper. The first presentation is obtained by quantum deforming the product of the Hirzebruch $\lambda _y$ classes of the tautological bundles. In physics, the $\lambda _y$ classes arise as certain Wilson line operators. The second presentation is obtained from the Coulomb branch equations involving the partial derivatives of a twisted superpotential from supersymmetric gauge theory. This is closest to a presentation obtained by Gorbounov and Korff, utilizing integrable systems techniques. Algebraically, we relate the Coulomb and Whitney presentations utilizing transition matrices from the (equivariant) Grothendieck polynomials to the (equivariant) complete homogeneous symmetric polynomials. Along the way, we calculate K-theoretic Gromov-Witten invariants of wedge powers of the tautological bundles on $\mathrm {Gr}(k;n)$, using the ‘quantum=classical’ statement.
In the present notes, we study a generalization of the Peterson subalgebra to an oriented (generalized) cohomology theory which we call the formal Peterson subalgebra. Observe that by recent results of Zhong the dual of the formal Peterson algebra provides an algebraic model for the oriented cohomology of the affine Grassmannian.
Our first result shows that the centre of the formal affine Demazure algebra (FADA) generates the formal Peterson subalgebra. Our second observation is motivated by the Peterson conjecture. We show that a certain localization of the formal Peterson subalgebra for the extended Dynkin diagram of type $\hat A_1$ provides an algebraic model for “quantum” oriented cohomology of the projective line. Our last result can be viewed as an extension of the previous results on Hopf algebroids of structure algebras of moment graphs to the case of affine root systems. We prove that the dual of the formal Peterson subalgebra (an oriented cohomology of the affine Grassmannian) is the zeroth Hochschild homology of the FADA.
Let ${\mathscr {G}} $ be a special parahoric group scheme of twisted type over the ring of formal power series over $\mathbb {C}$, excluding the absolutely special case of $A^{(2)}_{2\ell }$. Using the methods and results of Zhu, we prove a duality theorem for general ${\mathscr {G}} $: there is a duality between the level one twisted affine Demazure modules and the function rings of certain torus fixed point subschemes in affine Schubert varieties for ${\mathscr {G}} $. Along the way, we also establish the duality theorem for $E_6$. As a consequence, we determine the smooth locus of any affine Schubert variety in the affine Grassmannian of ${\mathscr {G}} $. In particular, this confirms a conjecture of Haines and Richarz.
For a certain class of real analytic varieties with Lie group actions, we develop a theory of (free-monodromic) tilting sheaves, and apply it to flag varieties stratified by real group orbits. For quasi-split real groups, we construct a fully faithful embedding of the category of tilting sheaves to a real analog of the category of Soergel bimodules, establishing real group analogs of Soergel’s structure theorem and the endomorphism theorem. We apply these results to give a purely geometric proof of the main result of Bezrukavnikov and Vilonen [Koszul duality for quasi-split real groups, Invent. Math. 226 (2021), 139–193], which proves Soergel’s conjecture [Langlands’ philosophy and Koszul duality, in Algebra – representation theory (Constanta, 2000), NATO Science Series II: Mathematics, Physics and Chemistry, vol. 28 (Kluwer Academic Publishers, Dordrecht, 2001), 379–414] for quasi-split groups.
This article explores the relationship between Hessenberg varieties associated with semisimple operators with two eigenvalues and orbit closures of a spherical subgroup of the general linear group. We establish the specific conditions under which these semisimple Hessenberg varieties are irreducible. We determine the dimension of each irreducible Hessenberg variety under consideration and show that the number of such varieties is a Catalan number. We then apply a theorem of Brion to compute a polynomial representative for the cohomology class of each such variety. Additionally, we calculate the intersections of a standard (Schubert) hyperplane section of the flag variety with each of our Hessenberg varieties and prove that this intersection possesses a cohomological multiplicity-free property.
The Newell–Littlewood (NL) numbers are tensor product multiplicities of Weyl modules for the classical groups in the stable range. Littlewood–Richardson (LR) coefficients form a special case. Klyachko connected eigenvalues of sums of Hermitian matrices to the saturated LR-cone and established defining linear inequalities. We prove analogues for the saturated NL-cone: a description by Extended Horn inequalities (as conjectured in part II of this series), where, using a result of King’s, this description is controlled by the saturated LR-cone and thereby recursive, just like the Horn inequalities; a minimal list of defining linear inequalities; an eigenvalue interpretation; and a factorization of Newell–Littlewood numbers, on the boundary.
We introduce a new algebra $\mathcal {U}=\dot {\mathrm {\mathbf{U}}}_{0,N}(L\mathfrak {sl}_n)$ called the shifted $0$-affine algebra, which emerges naturally from studying coherent sheaves on n-step partial flag varieties through natural correspondences. This algebra $\mathcal {U}$ has a similar presentation to the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk. Then, we construct a categorical $\mathcal {U}$-action on a certain 2-category arising from derived categories of coherent sheaves on n-step partial flag varieties. As an application, we construct a categorical action of the affine $0$-Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.
Dale Peterson has discovered a surprising result that the quantum cohomology ring of the flag variety $\operatorname {\mathrm {GL}}_n({\mathbb {C}})/B$ is isomorphic to the coordinate ring of the intersection of the Peterson variety $\operatorname {\mathrm {Pet}}_n$ and the opposite Schubert cell associated with the identity element $\Omega _e^\circ $ in $\operatorname {\mathrm {GL}}_n({\mathbb {C}})/B$. This is an unpublished result, so papers of Kostant and Rietsch are referred for this result. An explicit presentation of the quantum cohomology ring of $\operatorname {\mathrm {GL}}_n({\mathbb {C}})/B$ is given by Ciocan–Fontanine and Givental–Kim. In this paper, we introduce further quantizations of their presentation so that they reflect the coordinate rings of the intersections of regular nilpotent Hessenberg varieties $\operatorname {\mathrm {Hess}}(N,h)$ and $\Omega _e^\circ $ in $\operatorname {\mathrm {GL}}_n({\mathbb {C}})/B$. In other words, we generalize the Peterson’s statement to regular nilpotent Hessenberg varieties via the presentation given by Ciocan–Fontanine and Givental–Kim. As an application of our theorem, we show that the singular locus of the intersection of some regular nilpotent Hessenberg variety $\operatorname {\mathrm {Hess}}(N,h_m)$ and $\Omega _e^\circ $ is the intersection of certain Schubert variety and $\Omega _e^\circ $, where $h_m=(m,n,\ldots ,n)$ for $1<m<n$. We also see that $\operatorname {\mathrm {Hess}}(N,h_2) \cap \Omega _e^\circ $ is related with the cyclic quotient singularity.
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal. In this paper, we prove that quantum double Grothendieck polynomials, introduced by Lenart-Maeno, represent the corresponding (opposite) Schubert classes in the quantum K-theory ring $QK_{H}(Fl_{n+1})$ under this presentation. The main ingredient in our proof is an explicit formula expressing the semi-infinite Schubert class associated to the longest element of the finite Weyl group, which is proved by making use of the general Chevalley formula for the torus-equivariant K-group of the semi-infinite flag manifold associated to $SL_{n+1}(\mathbb {C})$.
We consider faithful actions of simple algebraic groups on self-dual irreducible modules and on the associated varieties of totally singular subspaces, under the assumption that the dimension of the group is at least as large as the dimension of the variety. We prove that in all but a finite list of cases, there is a dense open subset where the stabilizer of any point is conjugate to a fixed subgroup, called the generic stabilizer. We use these results to determine whether there exists a dense orbit. This in turn lets us complete the answer to the problem of determining all pairs of maximal connected subgroups of a classical group with a dense double coset.
We investigate the existence of 4-torsion in the integral cohomology of oriented Grassmannians. We establish bounds on the characteristic rank of oriented Grassmannians and prove some cases of our previous conjecture on the characteristic rank. We also discuss the relation between the characteristic rank and a result of Stong on the height of w1 in the cohomology of Grassmannians. The existence of 4-torsion classes follows from the results on the characteristic rank via Steenrod square considerations. We thus exhibit infinitely many examples of 4-torsion classes for oriented Grassmannians. We also prove bounds on torsion exponents of oriented flag manifolds. The article also discusses consequences of our results for a more general perspective on the relation between the torsion exponent and deficiency for homogeneous spaces.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
Chow rings of flag varieties have bases of Schubert cycles $\sigma _u $, indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis. The celebrated Littlewood–Richardson rules solve this problem for special products $\sigma _u \cdot \sigma _v$, where u and v are p-Grassmannian permutations.
Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the product $\sigma _u \cdot \sigma _v$ when u is p-inverse Grassmannian and v is q-inverse Grassmannian. By establishing several new families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial rule for $\sigma _u \cdot \sigma _v$ in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v is a q-inverse Grassmannian permutation.
The K-theoretic Schur P- and Q-functions $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $ may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual K-theoretic Schur P- and Q-functions $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ via a Cauchy identity involving $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $. They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ under the $\omega $ involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the $G\hspace {-0.2mm}Q$-functions are a basis for a ring.
The $\Delta $-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a $\Delta $-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field $\mathbb {F}_q$ and partitioning the $\Delta $-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at $t=0$.
We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.
We generalize the works of Pappas–Rapoport–Zhu on twisted affine Grassmannians to the wildly ramified case under mild assumptions. This rests on a construction of certain smooth affine $\mathbb {Z}[t]$-groups with connected fibers of parahoric type, motivated by previous work of Tits. The resulting $\mathbb {F}_p(t)$-groups are pseudo-reductive and sometimes non-standard in the sense of Conrad–Gabber–Prasad, and their $\mathbb {F}_p [\hspace {-0,5mm}[ {t} ]\hspace {-0,5mm}] $-models are parahoric in a generalized sense. We study their affine Grassmannians, proving normality of Schubert varieties and Zhu’s coherence theorem.
A Richardson variety in a flag variety is an intersection of two Schubert varieties defined by transverse flags. We define and study relative Richardson varieties, which are defined over a base scheme with a vector bundle and two flags. To do so, we generalise transversality of flags to a relative notion, versality, that allows the flags to be non-transverse over some fibers. Relative Richardson varieties share many of the geometric properties of Richardson varieties. We generalise several geometric and cohomological facts about Richardson varieties to relative Richardson varieties. We also prove that the local geometry of a relative Richardson variety is governed, in a precise sense, by the two intersecting Schubert varieties, giving a generalisation, in the flag variety case, of a theorem of Knutson–Woo–Yong; we also generalise this result to intersections of arbitrarily many relative Schubert varieties. We give an application to Brill–Noether varieties on elliptic curves, and a conjectural generalisation to higher genus curves.
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in $\mathbb {P}^n$ and $\mathbb {P}^n/G$, where G is a finite group that acts on $\mathbb {P}^n$ and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian $\operatorname {{\mathrm {Gr}}}(n,r)$ and preserves an appropriate Calabi–Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi–Yau hypersurfaces inside $\operatorname {{\mathrm {Gr}}}(n,r)$ and $\operatorname {{\mathrm {Gr}}}(n,r)/G$. This allows us to describe a compactification of the Eguchi–Hori–Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.