To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $a(n)$ be the nth Dirichlet coefficient of the automorphic L-function or the Rankin–Selberg L-function. We investigate the cancellation of $a(n)$ over sequences linked to the Waring–Goldbach problem, by establishing a non-trivial bound for the additive twisted sums over primes on ${\mathrm {GL}}_m$. The bound does not depend on the generalized Ramanujan conjecture or the non-existence of Landau–Siegel zeros. Furthermore, we present an application associated with the Sato–Tate conjecture and propose a conjecture about the Goldbach conjecture on average bound.
Let $A\ \mathrm{and}\ B$ be subsets of $(\mathbb {Z}/p^r\mathbb {Z})^2$. In this note, we provide conditions on the densities of A and B such that $|gA-B|\gg p^{2r}$ for a positive proportion of $g\in SO_2(\mathbb {Z}/p^r\mathbb {Z})$. The conditions are sharp up to constant factors in the unbalanced case, and the proof makes use of tools from discrete Fourier analysis and results in restriction/extension theory.
Let s be a fixed positive integer constant and let $\varepsilon $ be a fixed small positive number. Then, provided that a prime p is large enough, we prove that, for any set ${\mathcal M}\subseteq \mathbb {F}_p^*$ of size $|{\mathcal M}|= \lfloor { p^{14/29}}\rfloor $ and integer $H=\lfloor {p^{14/29+\varepsilon }}\rfloor $, any integer $\lambda $ can be represented in the form
When $s=1$, we show that, for almost all primes p, if $|{\mathcal M}|= \lfloor p^{1/2}\rfloor $ and $H=\lfloor p^{1/2}(\log p)^{6+\varepsilon }\rfloor $, then any integer $\lambda $ can be represented in the form
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
We demonstrate the existence of K-multimagic squares of order N consisting of $N^2$ distinct integers whenever $N> 2K(K+1)$. This improves our earlier result [D. Flores, ‘A circle method approach to K-multimagic squares’, preprint (2024), arXiv:2406.08161] in which we only required $N+1$ distinct integers. Additionally, we present a direct method by which our analysis of the magic square system may be used to show the existence of $N \times N$ magic squares consisting of distinct kth powers when
$$ \begin{align*}N> \begin{cases} 2^{k+1} & \text{if}\ 2 \leqslant k \leqslant 4, \\ 2 \lceil k(\log k + 4.20032) \rceil & \text{if}\ k \geqslant 5, \end{cases}\end{align*} $$
improving on a recent result by Rome and Yamagishi [‘On the existence of magic squares of powers’, preprint (2024), arxiv:2406.09364].
We establish bounds for exponential sums twisted by generalized Möbius functions and their convolutions. As an application, we prove asymptotic formulas for certain weighted chromatic partitions by using the Hardy–Littlewood circle method. Lastly, we provide an explicit formula relating the contributions from the major arcs with a sum over the zeros of the Riemann zeta-function.
Fix $\alpha >0$. Then by Fejér's theorem $(\alpha (\log n)^{A}\,\mathrm {mod}\,1)_{n\geq 1}$ is uniformly distributed if and only if $A>1$. We sharpen this by showing that all correlation functions, and hence the gap distribution, are Poissonian provided $A>1$. This is the first example of a deterministic sequence modulo $1$ whose gap distribution and all of whose correlations are proven to be Poissonian. The range of $A$ is optimal and complements a result of Marklof and Strömbergsson who found the limiting gap distribution of $(\log (n)\, \mathrm {mod}\,1)$, which is necessarily not Poissonian.
We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include $\ell^2$ decoupling, small cap decoupling and estimates of exponential sums.
We generalise and improve some recent bounds for additive energies of modular roots. Our arguments use a variety of techniques, including those from additive combinatorics, algebraic number theory and the geometry of numbers. We give applications of these results to new bounds on correlations between Salié sums and to a new equidistribution estimate for the set of modular roots of primes.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
We prove discrete restriction estimates for a broad class of hypersurfaces arising in seminal work of Birch. To do so, we use a variant of Bourgain’s arithmetic version of the Tomas–Stein method and Magyar’s decomposition of the Fourier transform of the indicator function of the integer points on a hypersurface.
We obtain new bounds on short Weil sums over small multiplicative subgroups of prime finite fields which remain nontrivial in the range the classical Weil bound is already trivial. The method we use is a blend of techniques coming from algebraic geometry and additive combinatorics.
Let $[t]$ be the integral part of the real number t and let $\mathbb {1}_{{\mathbb P}}$ be the characteristic function of the primes. Denote by $\pi _{\mathcal {S}}(x)$ the number of primes in the floor function set $\mathcal {S}(x) := \{[{x}/{n}] : 1\leqslant n\leqslant x\}$ and by $S_{\mathbb {1}_{{\mathbb P}}}(x)$ the number of primes in the sequence $\{[{x}/{n}]\}_{n\geqslant 1}$. Improving a result of Heyman [‘Primes in floor function sets’, Integers22 (2022), Article no. A59], we show
for $x\to \infty $, where $C_{\mathbb {1}_{{\mathbb P}}} := \sum _{p} {1}/{p(p+1)}$, $c>0$ is a positive constant and $\varepsilon $ is an arbitrarily small positive number.
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related to the boundedness of resolvents of the Laplacian and the boundedness of $L^{p}$ norms of eigenfunctions of the Laplacian. We formulate a conjecture and partially prove it.
We consider sums involving the divisor function over nonhomogeneous ($\beta \neq 0$) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that
where N is a sufficiently large integer, $\alpha $ is of finite type $\tau $ and $\beta \neq 0$. Previously, such estimates were only obtained for homogeneous Beatty sequences or for almost all $\alpha $.
Recently E. Bombieri and N. M. Katz (2010) demonstrated that several well-known results about the distribution of values of linear recurrence sequences lead to interesting statements for Frobenius traces of algebraic curves. Here we continue this line of study and establish the Möbius randomness law quantitatively for the normalised form of Frobenius traces.
We prove that sums of length about $q^{3/2}$ of Hecke eigenvalues of automorphic forms on $\operatorname{SL}_{3}(\mathbf{Z})$ do not correlate with $q$-periodic functions with bounded Fourier transform. This generalizes the earlier results of Munshi and Holowinsky–Nelson, corresponding to multiplicative Dirichlet characters, and applies, in particular, to trace functions of small conductor modulo primes.
We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain power condition and use it to prove several generalizations of Igusa’s conjecture on exponential sums, with the log canonical threshold in the exponent of the estimates. We show that this covers optimally all situations of the conjectures for nonrational singularities by comparing the log canonical threshold with a local notion of the motivic oscillation index.