Let   $q$ ,
 $q$ ,  $m$ ,
 $m$ ,  $M\,\ge \,2$  be positive integers and
 $M\,\ge \,2$  be positive integers and   ${{r}_{1}},\,{{r}_{2}},...,\,{{r}_{m}}$  be positive rationals and consider the following
 ${{r}_{1}},\,{{r}_{2}},...,\,{{r}_{m}}$  be positive rationals and consider the following   $M$  multivariate infinite products
 $M$  multivariate infinite products
   $${{F}_{i}}\,=\,\prod\limits_{j=0}^{\infty }{(1\,+\,{{q}^{-(Mj+i)}}\,{{r}_{1}}\,+\,{{q}^{-2(Mj+i)}}\,{{r}_{2}}\,+\,\cdot \cdot \cdot +\,{{q}^{-m(Mj+i)}}\,{{r}_{m}})}$$
 $${{F}_{i}}\,=\,\prod\limits_{j=0}^{\infty }{(1\,+\,{{q}^{-(Mj+i)}}\,{{r}_{1}}\,+\,{{q}^{-2(Mj+i)}}\,{{r}_{2}}\,+\,\cdot \cdot \cdot +\,{{q}^{-m(Mj+i)}}\,{{r}_{m}})}$$  
for   $i\,=\,0,\,1,\,.\,.\,.\,,\,M\,-\,1$ . In this article, we study the linear independence of these infinite products. In particular, we obtain a lower bound for the dimension of the vector space
 $i\,=\,0,\,1,\,.\,.\,.\,,\,M\,-\,1$ . In this article, we study the linear independence of these infinite products. In particular, we obtain a lower bound for the dimension of the vector space   $\mathbb{Q}{{F}_{0}}\,+\,\mathbb{Q}{{F}_{1}}\,+\cdot \cdot \cdot +\,\mathbb{Q}{{F}_{M-1}}\,+\,\mathbb{Q}$  over ℚ and show that among these
 $\mathbb{Q}{{F}_{0}}\,+\,\mathbb{Q}{{F}_{1}}\,+\cdot \cdot \cdot +\,\mathbb{Q}{{F}_{M-1}}\,+\,\mathbb{Q}$  over ℚ and show that among these   $M$  infinite products,
 $M$  infinite products,   ${{F}_{0}}\,+\,{{F}_{1}},...,\,{{F}_{M-1}}$ , at least
 ${{F}_{0}}\,+\,{{F}_{1}},...,\,{{F}_{M-1}}$ , at least   $\sim \,M/m\left( m+1 \right)$  of them are irrational for fixed
 $\sim \,M/m\left( m+1 \right)$  of them are irrational for fixed   $m$  and
 $m$  and   $M\,\to \,\infty $ .
 $M\,\to \,\infty $ .