To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the early 2000s, Ramakrishna asked the question: for the elliptic curve
\[E\;:\; y^2 = x^3 - x,\]
what is the density of primes p for which the Fourier coefficient $a_p(E)$ is a cube modulo p? As a generalisation of this question, Weston–Zaurova formulated conjectures concerning the distribution of power residues of degree m of the Fourier coefficients of elliptic curves $E/\mathbb{Q}$ with complex multiplication. In this paper, we prove the conjecture of Weston–Zaurova for cubic residues using the analytic theory of spin. Our proof works for all elliptic curves E with complex multiplication.
The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and prime-order reduction, respectively, for elliptic curves over $\mathbb {Q}$. In 1976, Serre gave a conditional proof of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open. The conjectures are now known unconditionally “on average” due to work of Banks–Shparlinski and Balog–Cojocaru–David. Recently, there has been a growing interest in the cyclicity conjecture for primes in arithmetic progressions (AP), with relevant work by Akbal–Güloğlu and Wong. In this article, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average, these two constants are oppositely biased over congruence classes. Finally, in an accompanying repository, we give Magma code for computing the constants discussed in this article.
Given an elliptic curve $ E $ over $ \mathbb {Q} $ of analytic rank zero, its L-function can be twisted by an even primitive Dirichlet character $ \chi $ of order $ q $, and in many cases its associated special L-value $ \mathscr {L}(E, \chi ) $ is known to be integral after normalizing by certain periods. This article determines the precise value of $ \mathscr {L}(E, \chi ) $ in terms of Birch–Swinnerton-Dyer invariants when $ q = 3 $, classifies their asymptotic densities modulo $ 3 $ by fixing $ E $ and varying $ \chi $, and presents a lower bound on the $ 3 $-adic valuation of $ \mathscr {L}(E, 1) $, all of which arise from a congruence of modular symbols. These results also explain some phenomena observed by Dokchitser–Evans–Wiersema and by Kisilevsky–Nam.
We explore the relationship between (3-isogeny induced) Selmer group of an elliptic curve and the (3 part of) the ideal class group, over certain non-abelian number fields.
Let $e$ and $q$ be fixed co-prime integers satisfying $1\lt e\lt q$. Let $\mathscr {C}$ be a certain family of deformations of the curve $y^e=x^q$. That family is called the $(e,q)$-curve and is one of the types of curves called plane telescopic curves. Let $\varDelta$ be the discriminant of $\mathscr {C}$. Following pioneering work by Buchstaber and Leykin (BL), we determine the canonical basis $\{ L_j \}$ of the space of derivations tangent to the variety $\varDelta =0$ and describe their specific properties. Such a set $\{ L_j \}$ gives rise to a system of linear partial differential equations (heat equations) satisfied by the function $\sigma (u)$ associated with $\mathscr {C}$, and eventually gives its explicit power series expansion. This is a natural generalisation of Weierstrass’ result on his sigma function. We attempt to give an accessible description of various aspects of the BL theory. Especially, the text contains detailed proofs for several useful formulae and known facts since we know of no works which include their proofs.
We show that for $5/6$-th of all primes p, Hilbert’s 10th problem is unsolvable for the ring of integers of $\mathbb {Q}(\zeta _3, \sqrt [3]{p})$. We also show that there is an infinite set S of square-free integers such that Hilbert’s 10th problem is unsolvable over the ring of integers of $\mathbb {Q}(\zeta _3, \sqrt {D}, \sqrt [3]{p})$ for every $D \in S$ and for every prime $p \equiv 2, 5\ \pmod 9$. We use the CM elliptic curves $y^2=x^3-432 D^2$ associated with the cube-sum problem, with D varying in suitable congruence class, in our proof.
We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions which satisfy the Generalized Riemann Hypothesis, we show that the average analytic rank of isomorphism classes of elliptic curves over K is bounded above by $(9\deg (K)+1)/2$, when ordered by naive height. A key ingredient in the proof is giving asymptotics for the number of elliptic curves over an arbitrary number field with a prescribed local condition; these results are obtained by proving general results for counting points of bounded height on weighted projective stacks with a prescribed local condition, which may be of independent interest.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
Let $E/\mathbb {Q}(T)$ be a nonisotrivial elliptic curve of rank r. A theorem due to Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math.342 (1983), 197–211] implies that the rank $r_t$ of the specialisation $E_t/\mathbb {Q}$ is at least r for all but finitely many $t \in \mathbb {Q}$. Moreover, it is conjectured that $r_t \leq r+2$, except for a set of density $0$. When $E/\mathbb {Q}(T)$ has a torsion point of order $2$, under an assumption on the discriminant of a Weierstrass equation for $E/\mathbb {Q}(T)$, we produce an upper bound for $r_t$ that is valid for infinitely many t. We also present two examples of nonisotrivial elliptic curves $E/\mathbb {Q}(T)$ such that $r_t \leq r+1$ for infinitely many t.
For a prime p and a rational elliptic curve $E_{/\mathbb {Q}}$, set $K=\mathbb {Q}(E[p])$ to denote the torsion field generated by $E[p]:=\operatorname {ker}\{E\xrightarrow {p} E\}$. The class group $\operatorname {Cl}_K$ is a module over $\operatorname {Gal}(K/\mathbb {Q})$. Given a fixed odd prime number p, we study the average nonvanishing of certain Galois stable quotients of the mod-p class group $\operatorname {Cl}_K/p\operatorname {Cl}_K$. Here, E varies over all rational elliptic curves, ordered according to height. Our results are conditional, since we assume that the p-primary part of the Tate–Shafarevich group is finite. Furthermore, we assume predictions made by Delaunay for the statistical variation of the p-primary parts of Tate–Shafarevich groups. We also prove results in the case when the elliptic curve $E_{/\mathbb {Q}}$ is fixed and the prime p is allowed to vary.
Ishitsuka et al. [‘Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic’, Int. J. Number Theory16(4) (2020), 881–905] found all points on the Fermat quartic ${F_4\colon x^4+y^4=z^4}$ over quadratic extensions of ${\mathbb {Q}}(\zeta _8)$, where $\zeta _8$ is the eighth primitive root of unity $e^{i\pi /4}$. Using Mordell’s technique, we give an alternative proof for the result of Ishitsuka et al. and extend it to the rational function field ${\mathbb {Q}}({\zeta _8})(T_1,T_2,\ldots ,T_n)$.
We present a new version of a generalisation to elliptic nets of a theorem of Ward [‘Memoir on elliptic divisibility sequences’, Amer. J. Math.70 (1948), 31–74] on symmetry of elliptic divisibility sequences. Our results cover all that is known today.
We show that if F is $\mathbb{Q}$ or a multiquadratic number field, $p\in\left\{{2,3,5}\right\}$, and $K/F$ is a Galois extension of degree a power of p, then for elliptic curves $E/\mathbb{Q}$ ordered by height, the average dimension of the p-Selmer groups of $E/K$ is bounded. In particular, this provides a bound for the average K-rank of elliptic curves $E/\mathbb{Q}$ for such K. Additionally, we give bounds for certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions of such F.
The central result is that: for each finite Galois extension $K/F$ of number fields and prime number p, as $E/\mathbb{Q}$ varies, the difference in dimension between the Galois fixed space in the p-Selmer group of $E/K$ and the p-Selmer group of $E/F$ has bounded average.
For an elliptic curve E defined over a number field K and $L/K$ a Galois extension, we study the possibilities of the Galois group Gal$(L/K)$, when the Mordell–Weil rank of $E(L)$ increases from that of $E(K)$ by a small amount (namely 1, 2, and 3). In relation with the vanishing of corresponding L-functions at $s=1$, we prove several elliptic analogues of classical theorems related to Artin’s holomorphy conjecture. We then apply these to study the analytic minimal subfield, first introduced by Akbary and Murty, for the case when order of vanishing is 2. We also investigate how the order of vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of Kolyvagin.
For N integer $\ge 1$, K. Murty and D. Ramakrishnan defined the Nth Heisenberg curve, as the compactified quotient $X^{\prime }_N$ of the upper half-plane by a certain non-congruence subgroup of the modular group. They ask whether the Manin–Drinfeld principle holds, namely, if the divisors supported on the cusps of those curves are torsion in the Jacobian. We give a model over $\mathbf {Z}[\mu _N,1/N]$ of the Nth Heisenberg curve as covering of the Nth Fermat curve. We show that the Manin–Drinfeld principle holds for $N=3$, but not for $N=5$. We show that the description by generator and relations due to Rohrlich of the cuspidal subgroup of the Fermat curve is explained by the Heisenberg covering, together with a higher covering of a similar nature. The curves $X_N$ and the classical modular curves $X(n)$, for n even integer, both dominate $X(2)$, which produces a morphism between Jacobians $J_N\rightarrow J(n)$. We prove that the latter has image $0$ or an elliptic curve of j-invariant $0$. In passing, we give a description of the homology of $X^{\prime }_{N}$.
Let $U$ be a smooth affine curve over a number field $K$ with a compactification $X$ and let ${\mathbb {L}}$ be a rank $2$, geometrically irreducible lisse $\overline {{\mathbb {Q}}}_\ell$-sheaf on $U$ with cyclotomic determinant that extends to an integral model, has Frobenius traces all in some fixed number field $E\subset \overline {\mathbb {Q}}_{\ell }$, and has bad, infinite reduction at some closed point $x$ of $X\setminus U$. We show that ${\mathbb {L}}$ occurs as a summand of the cohomology of a family of abelian varieties over $U$. The argument follows the structure of the proof of a recent theorem of Snowden and Tsimerman, who show that when $E=\mathbb {Q}$, then ${\mathbb {L}}$ is isomorphic to the cohomology of an elliptic curve $E_U\rightarrow U$.
In this note, we prove a formula for the cancellation exponent $k_{v,n}$ between division polynomials $\psi _n$ and $\phi _n$ associated with a sequence $\{nP\}_{n\in \mathbb {N}}$ of points on an elliptic curve $E$ defined over a discrete valuation field $K$. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree-$2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-$2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$-extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$, where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$-extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$-extension, then it holds for almost all $\mathbb{Z}_{p}$-extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie extension.
Let p be a prime. In this paper, we use techniques from Iwasawa theory to study questions about rank jump of elliptic curves in cyclic extensions of degree p. We also study growth of the p-primary Selmer group and the Shafarevich–Tate group in cyclic degree-p extensions and improve upon previously known results in this direction.