$ \epsilon $-ISOMORPHISMS FOR RANK ONE
$( \varphi , \Gamma )$-MODULES OVER LUBIN-TATE ROBBA RINGS
$\mu$-invariant of two-variable
$2$-adic
$\boldsymbol{L}$-functions
${\ell }$-modular representations of
$\operatorname {GL}_n({ F})$ distinguished by a Galois involution
${\mathrm {SL}}_2(\mathbb {Q}_p)$
$\mathrm {GL}_2\times \mathrm {GL}_2$
$p$-adic monodromy theorem for de Rham local systems
$2$-DIMENSIONAL SEMISTABLE REPRESENTATIONS WITH LARGE
$\mathcal L$-INVARIANT