To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using an explicit Eichler–Shimura–Harder isomorphism, we establish the analog of Manin’s rationality theorem for Bianchi periods and hence special values of L-functions of Bianchi cusp forms. This gives a new short proof of a result of Hida in the case of Euclidean imaginary quadratic fields. In particular, we give an explicit proof using the space of Bianchi period polynomials constructed by Karabulut and describe the action of Hecke operators.
We formulate Guo–Jacquet type fundamental lemma conjectures and arithmetic transfer conjectures for inner forms of $GL_{2n}$. Our main results confirm these conjectures for division algebras of invariant $1/4$ and $3/4$.
For an even positive integer n, we study rank-one Eisenstein cohomology of the split orthogonal group $\mathrm {O}(2n+2)$ over a totally real number field $F.$ This is used to prove a rationality result for the ratios of successive critical values of degree-$2n$ Langlands L-functions associated to the group $\mathrm {GL}_1 \times \mathrm {O}(2n)$ over F. The case $n=2$ specializes to classical results of Shimura on the special values of Rankin–Selberg L-functions attached to a pair of Hilbert modular forms.
We give a short proof of the anticyclotomic analogue of the “strong” main conjecture of Kurihara on Fitting ideals of Selmer groups for elliptic curves with good ordinary reduction under mild hypotheses. More precisely, we completely determine the initial Fitting ideal of Selmer groups over finite subextensions of an imaginary quadratic field in its anticyclotomic $\mathbb {Z}_p$-extension in terms of Bertolini–Darmon’s theta elements.
Let p be an odd prime, and suppose that $E_1$ and $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension $K/F$. Assuming $E_1$ and $E_2$ are ordinary at p, we compute the variation in the $\mu$- and $\lambda$-invariants for the $\tau$-part of the Iwasawa Main Conjecture, as one switches from $E_1$ to $E_2$. Provided an Euler system exists, it will follow directly that IMC$(E_1,\tau)$ is true if and only if IMC$(E_2,\tau)$ is true.
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of $\mathrm {GL}(n) \times \mathrm {GL}(n')$ over a totally imaginary field $F.$ The proof is based on a cohomological interpretation of Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group $\mathrm {GL}(N)/F,$ where $N = n+n'.$ The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties of the critical values.
We introduce the L-series of weakly holomorphic modular forms using Laplace transforms and give their functional equations. We then determine converse theorems for vector-valued harmonic weak Maass forms, Jacobi forms, and elliptic modular forms of half-integral weight in Kohnen plus space.
The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function $j_0(\tau )=1$. More generally, we consider the singular moduli for the Hecke system of modular functions
For each $\nu \geq 0$ and $m\geq 1$, we obtain an Eichler–Selberg relation. For $\nu =0$ and $m\in \{1, 2\},$ these relations are Kaneko’s celebrated singular moduli formulas for the coefficients of $j(\tau ).$ For each $\nu \geq 1$ and $m\geq 1,$ we obtain a new Eichler–Selberg trace formula for the Hecke action on the space of weight $2 \nu +2$ cusp forms, where the traces of $j_m(\tau )$ singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is assembled from values of symmetrized shifted convolution L-functions.
We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of $(\mathrm {SO}(5), \mathrm {SO}(2))$. In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of $L$-functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.
We formulate and prove the archimedean period relations for Rankin–Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$. As a consequence, we prove the period relations for critical values of the Rankin–Selberg L-functions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$ over arbitrary number fields.
Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.
We investigate Eisenstein congruences between the so-called Euler systems of Garrett–Rankin–Selberg type. This includes the cohomology classes of Beilinson–Kato, Beilinson–Flach, and diagonal cycles. The proofs crucially rely on different known versions of the Bloch–Kato conjecture, and are based on the study of the Perrin-Riou formalism and the comparison between the different p-adic L-functions.
In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$-functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$. Then for $t\in \mathbb {R}$ and any $\varepsilon>0$, we have
We prove that the homology classes of closed geodesics associated to subgroups of narrow class groups of real quadratic fields concentrate around the Eisenstein line. This fits into the framework of Duke’s Theorem and can be seen as a real quadratic analogue of results of Michel and Liu–Masri–Young on supersingular reduction of CM-elliptic curves. We also study the level aspect, as well as a homological version of the sup norm problem. Finally, we present applications to group theory and modular forms
Romyar Sharifi has constructed a map $\varpi _M$ from the first homology of the modular curve $X_1(M)$ to the K-group $K_2(\operatorname {\mathrm {\mathbf {Z}}}[\zeta _M+\zeta _M^{-1}, \frac {1}{M}]) \otimes \operatorname {\mathrm {\mathbf {Z}}}[1/2]$, where $\zeta _M$ is a primitive Mth root of unity. Sharifi conjectured that $\varpi _M$ is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved this conjecture after tensoring with $\operatorname {\mathrm {\mathbf {Z}}}_p$ for a prime $p\geq 5$ dividing M. More recently, Sharifi and Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two main results. First, we give a relation between $\varpi _M$ and $\varpi _{M'}$ when $M' \mid M$. Our method relies on the techniques developed by Sharifi and Venkatesh. We then use this result in combination with results of Fukaya and Kato in order to get the Eisenstein property of $\varpi _M$ for Hecke operators of index dividing M.
In this paper, we prove the algebraicity of some L-values attached to quaternionic modular forms. We follow the rather well-established path of the doubling method. Our main contribution is that we include the case where the corresponding symmetric space is of non-tube type. We make various aspects very explicit, such as the doubling embedding, coset decomposition, and the definition of algebraicity of modular forms via CM-points.
In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between Klingen Eisenstein series and cusp forms on $\mathrm {GU}(3,1)$, generalizing an earlier result of the third-named author to allow nonordinary cusp forms. The main result is a key input in the third-named author’s proof of Kobayashi’s $\pm $-main conjecture for supersingular elliptic curves. The new ingredient here is developing a semiordinary Hida theory along an appropriate smaller weight space and a study of the semiordinary Eisenstein family.
For an (irreducible) recurrence equation with coefficients from $\mathbb Z[n]$ and its two linearly independent rational solutions $u_n,v_n$, the limit of $u_n/v_n$ as $n\to \infty $, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
Let F be a Siegel cusp form of degree $2$, even weight $k \ge 2$, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients $a(F,S)$ of F at fundamental matrices S (i.e., with $-4\det (S)$ equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with $\det (S) \asymp X$, the sequence $a(F,S)$ has at least $X^{1-\varepsilon }$ sign changes and takes at least $X^{1-\varepsilon }$ ‘large values’. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan–Gross–Prasad conjecture, we prove the bound $\lvert a(F,S)\rvert \ll _{F, \varepsilon } \frac {\det (S)^{\frac {k}2 - \frac {1}{2}}}{ \left (\log \lvert \det (S)\rvert \right )^{\frac 18 - \varepsilon }}$ for fundamental matrices S.
Following Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.