Let θ = θ(k) be the positive root of θ 2 + (k-2)θ-k = 0. Let f(n) = [(n + l)θ]-[nθ] for positive integers n, where [x] denotes the greatest integer in x. Then the elements of the infinite sequence (f(l), f(2), f(3),…) can be rapidly generated from the finite sequence (f(l), f(2),…,f(k)) by means of certain shift operators. For k = 1 we can generate (the characteristic function of) the sequence [n θ] itself in this manner.