To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $t\geq 2$ and $k\geq 1$ be integers. A t-regular partition of a positive integer n is a partition of n such that none of its parts is divisible by t. Let $b_{t,k}(n)$ denote the number of hooks of length k in all the t-regular partitions of n. In this article, we prove some inequalities for $b_{t,k}(n)$ for fixed values of k. We prove that for any $t\geq 2$, $b_{t+1,1}(n)\geq b_{t,1}(n)$, for all $n\geq 0$. We also prove that $b_{3,2}(n)\geq b_{2,2}(n)$ for all $n>3$, and $b_{3,3}(n)\geq b_{2,3}(n)$ for all $n\geq 0$. Finally, we state some problems for future works.
A partition is called a t-core if none of its hook lengths is a multiple of t. Let $a_t(n)$ denote the number of t-core partitions of n. Garvan, Kim and Stanton proved that for any $n\geq1$ and $m\geq1$, $a_t\big(t^mn-(t^2-1)/24\big)\equiv0\pmod{t^m}$, where $t\in\{5,7,11\}$. Let $A_{t,k}(n)$ denote the number of partition k-tuples of n with t-cores. Several scholars have been subsequently investigated congruence properties modulo high powers of 5 for $A_{5,k}(n)$ with $k\in\{2,3,4\}$. In this paper, by utilizing a recurrence related to the modular equation of fifth order, we establish dozens of congruence families modulo high powers of 5 satisfied by $A_{5,k}(n)$, where $4\leq k\leq25$. Moreover, we deduce an infinite family of internal congruences modulo high powers of 5 for $A_{5,4}(n)$. In particular, we generalize greatly a recent result on a congruence family modulo high powers of 5 enjoyed by $A_{5,4}(n)$, which was proved by Saikia, Sarma and Talukdar (Indian J. Pure Appl. Math., 2024). Finally, we conjecture that there exists a similar phenomenon for $A_{5,k}(n)$ with $k\geq26$.
Amdeberhan et al. [‘Arithmetic properties for generalized cubic partitions and overpartitions modulo a prime’, Aequationes Math. (2024), doi:10.1007/s00010-024-01116-7] defined the generalised cubic partition function $a_c(n)$ as the number of partitions of n whose even parts may appear in $c\geq 1$ different colours and proved that $a_3(7n+4)\equiv 0\pmod {7}$ and $a_5(11n+10)\equiv 0\pmod {11}$ for all $n\geq 0$ via modular forms. Recently, the author [‘A note on congruences for generalized cubic partitions modulo primes’, Integers25 (2025), Article no. A20] gave elementary proofs of these congruences. We prove in this note two infinite families of congruences modulo $5$ for $a_c(n)$ given by
In this work, we investigate the arithmetic properties of $b_{5^k}(n)$, which counts the partitions of n where no part is divisible by $5^k$. By constructing generating functions for $b_{5^k}(n)$ across specific arithmetic progressions, we establish a set of Ramanujan-type congruences.
Andrews and El Bachraoui [‘On two-colour partitions with odd smallest part’, Preprint, arXiv:2410.14190] explored many integer partitions in two colours, some of which are generated by the mock theta functions of third order of Ramanujan and Watson. They also posed questions regarding combinatorial proofs for these results. In this paper, we establish bijections to provide a combinatorial proof of one of these results and a companion result. We give analytic proofs of further companion results.
Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23 (2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal excludants for overpartitions and establish relations to certain functions due to Ramanujan.
In his “lost notebook,” Ramanujan used iterated derivatives of two theta functions to define sequences of q-series $\{U_{2t}(q)\}$ and $\{V_{2t}(q)\}$ that he claimed to be quasimodular. We give the first explicit proof of this claim by expressing them in terms of “partition Eisenstein series,” extensions of the classical Eisenstein series $E_{2k}(q),$ defined by
For all t, we prove that $U_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _U;q)$ and $V_{2t}(q)=\operatorname {\mathrm {Tr}}_t(\phi _V;q),$ where $\phi _U$ and $\phi _V$ are natural partition weights, giving the first explicit quasimodular formulas for these series.
Let $\overline {M}(a,c,n)$ denote the number of overpartitions of n with first residual crank congruent to a modulo c with $c\geq 3$ being odd and $0\leq a<c$. The central objective of this paper is twofold: firstly, to establish an asymptotic formula for the crank of overpartitions; and secondly, to establish several inequalities concerning $\overline {M}(a,c,n)$ that encompasses crank differences, positivity, and strict log-subadditivity.
Recently, Alanazi et al. [‘Refining overpartitions by properties of nonoverlined parts’, Contrib. Discrete Math.17(2) (2022), 96–111] considered overpartitions wherein the nonoverlined parts must be $\ell $-regular, that is, the nonoverlined parts cannot be divisible by the integer $\ell $. In the process, they proved a general parity result for the corresponding enumerating functions. They also proved some specific congruences for the case $\ell =3$. In this paper we use elementary generating function manipulations to significantly extend this set of known congruences for these functions.
We establish some inequalities that arise from truncating Lerch sums and derive uniform asymptotic formulae for the spt-crank of ordinary partitions. The uniform asymptotic formulae improve upon a result of Mao [‘Asymptotic formulas for spt-crank of partitions’, J. Math. Anal. Appl.460(1) (2018), 121–139].
An integer partition of a positive integer n is called t-core if none of its hook lengths is divisible by t. Gireesh et al. [‘A new analogue of t-core partitions’, Acta Arith.199 (2021), 33–53] introduced an analogue $\overline {a}_t(n)$ of the t-core partition function. They obtained multiplicative formulae and arithmetic identities for $\overline {a}_t(n)$ where $t \in \{3,4,5,8\}$ and studied the arithmetic density of $\overline {a}_t(n)$ modulo $p_i^{\,j}$ where $t=p_1^{a_1}\cdots p_m^{a_m}$ and $p_i\geq 5$ are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, J. Integer Seq.27 (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by $\overline {a}_5(n)$. We study the arithmetic densities of $\overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^\alpha m$ where $\gcd (m,6)$=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, Int. J. Number Theory1 (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for $\overline {a}_3(n)$ modulo arbitrary powers of 2.
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
In 2007, Andrews introduced Durfee symbols and k-marked Durfee symbols so as to give a combinatorial interpretation for the symmetrized moment function $\eta _{2k}(n)$ of ranks of partitions. He also considered the relations between odd Durfee symbols and the mock theta function $\omega (q)$, and proved that the $2k$th moment function $\eta _{2k}^0(n)$ of odd ranks of odd Durfee symbols counts $(k+1)$-marked odd Durfee symbols of n. In this paper, we first introduce the definition of symmetrized positive odd rank moments $\eta _k^{0+}(n)$ and prove that for all $1\leq i\leq k+1$, $\eta _{2k-1}^{0+}(n)$ is equal to the number of $(k+1)$-marked odd Durfee symbols of n with the ith odd rank equal to zero and $\eta _{2k}^{0+}(n)$ is equal to the number of $(k+1)$-marked Durfee symbols of n with the ith odd rank being positive. Then we calculate the generating functions of $\eta _{k}^{0+}(n)$ and study its asymptotic behavior. Finally, we use Wright’s variant of the Hardy–Ramanujan circle method to obtain an asymptotic formula for $\eta _{k}^{0+}(n)$.
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic connections with a directed last passage percolation model in $\mathbb {Z}^d$.
In 2019, Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23(2) (2019), 249–254] introduced the arithmetic function $\sigma \textrm {mex}(n)$, which denotes the sum of minimal excludants over all the partitions of n. Baruah et al. [‘A refinement of a result of Andrews and Newman on the sum of minimal excludants’, Ramanujan J., to appear] showed that the sum of minimal excludants over all the partitions of n is the same as the number of partition pairs of n into distinct parts. They proved three congruences modulo $4$ and $8$ for two functions appearing in this refinement and conjectured two further congruences modulo $8$ and $16$. We confirm these two conjectures by using q-series manipulations and modular forms.
Formulas evaluating differences of integer partitions according to the parity of the parts are referred to as Legendre theorems. In this paper we give some formulas of Legendre type for overpartitions.